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Improving regional estimates of actual evapotranspiration (λΕ) in water-limited regions located at climatic
transition zones is critical. This study assesses an λΕ model (PT-JPL model) based on downscaling potential
evapotranspiration according to multiple stresses at daily time-scale in two of these regions using MSG–SEVIRI
(surface temperature and albedo) and MODIS products (NDVI, LAI and fPAR). An open woody savanna in the
Sahel (Mali) and a Mediterranean grassland (Spain) were selected as test sites with Eddy Covariance data
used for evaluation. The PT-JPL model was modified to run at a daily time step and the outputs from eight
algorithms differing in the input variables and also in the formulation of the biophysical constraints (stresses)
were compared with the λΕ from the Eddy Covariance. Model outputs were also compared with other modeling
studies at similar global dryland ecosystems.
The novelty of this paper is the computation of a key model parameter, the soil moisture constraint, relying on
the concept of apparent thermal inertia (fSM-ATI) computed with surface temperature and albedo observations.
Our results showed that fSM-ATI from both in-situ and satellite data produced satisfactory results for λΕ at
the Sahelian savanna, comparable to parameterizations using field-measured Soil Water Content (SWC)
with r2 greater than 0.80. In the Mediterranean grasslands however, with much lower daily λE values,
model results were not as good as in the Sahel (r2=0.57–0.31) but still better than reported values from
more complex models applied at the site such as the Two Source Model (TSM) or the Penman–Monteith
Leuning model (PML).
PT-JPL-dailymodelwith a soilmoisture constraint based on apparent thermal inertia, fSM-ATI offers great potential
for regionalization as no field-calibrations are required andwater vapor deficit estimates, required in the original
version, are not necessary, being air temperature and the available energy (Rn-G) the only input variables
required, apart from routinely available satellite products.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Evapotranspiration (or latent heat flux expressed in energy terms,
λE) represents 90% of the annual precipitation in water-limited regions
which cover 40% of the Earth's surface (Glenn et al., 2007). In these
regions there is a close link between carbon and water cycles
(Baldocchi, 2008) where water availability is themain control for biolog-
ical activity (Brogaard et al., 2005). λE rates also determine groundwater
recharge (Huxman et al., 2005) and feedbacks to continental precipita-
tion patterns (Huntington, 2006). The Sahel and the Mediterranean
basin are both located in transitional climate regions and are thus
iversity of Copenhagen, Øster
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expected to be extremely sensitive to climate change (Giorgi & Lionello,
2008). The land surface is a strong amplifier on the inter-annual
variability of the West African Monsoon leading to the observed
persistency patterns (Nicholson, 2000; Taylor et al., 2011; Timouk et
al., 2009). Therefore, improving estimates of temporal and spatial
variations of λE is crucial for understanding land surface–atmosphere
interactions and to improve hydrological and agricultural management
(Yuan et al., 2010).

λE can be estimated at regional scales using remote sensing data.
One way is to use models based on the bulk resistance equation for
heat transfer (Brutsaert, 1982), relying on the difference between
surface temperature (Ts) and air temperature (Ta) and the aerodynamic
resistance to turbulent heat transport. In this case, λE is estimated indi-
rectly as a residual of the surface energy balance equation (Anderson et
al., 2007; Chehbouni et al., 1997). This approach circumvents the problem
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of estimating soil and canopy surface resistances to water vapor, needed
to compute λE, that tend to be more critical in λEmodeling than aerody-
namic resistances in dryland regions (Verhoef, 1998; Were et al., 2007).
In those regions, two-source models treating the land surface as a
composite of soil and vegetation elements with different temperatures,
fluxes, and atmospheric coupling provide better results than
single-source models (Anderson et al., 2007). However, despite the
strong physical basis of two-source models (Kustas & Norman, 1999;
Norman et al., 1995) their spatialization is difficult because the task of
estimating aerodynamic resistances at instantaneous time scales is not
trivial, requiring knowledge about atmospheric stability, several vege-
tation and soil parameters as well as meteorological data (Fisher et al.,
2008). Further complications arise from the partition of Ts between
soil and vegetation (Kustas & Norman, 1999) because the radiative
surface temperature differs from the aerodynamic surface temperature
especially over sparsely vegetated surfaces (Chehbouni et al., 1997).

A second group of models using remote sensing data directly
solves the λE term using the Penman–Monteith (PM) combination
equation. In this case, λE can be partitioned into soil and vegetation
components (Leuning et al., 2008). With this approach, the challenge
is to characterize the spatial and temporal variation in surface conduc-
tances to water vapor without using field calibration (Zhang et al.,
2010). A simple way to estimate surface conductances is to use pre-
scribed sets of parameters based on biome-type maps (Zhang et al.,
2010). Other approaches perform optimization with field data but can
lead to a lack of estimates over vast regions of the globe, such as the
Sahel, due to the scarcity of field measurements (Yuan et al., 2010).
One of the first attempts to characterize surface conductance without
optimization proposed an empirical relationship with LAI derived
from MODIS (Moderate Resolution Imaging Spectroradiometer)
(Cleugh et al., 2007). Mu et al. (2007, 2011) refined this approach
using the empirical multiplicative model proposed by (Jarvis, 1976)
estimating moisture and temperature constraints on stomatal conduc-
tance and upscaling leaf stomatal conductance to canopy. Alternatively,
Leuning et al. (2008) used a biophysical model for surface conductance
based on Kelliher et al. (1995) method. However, this method required
optimization with field data for gsx, the maximum stomatal conductance
of leaves, and for the soil water content. As both parameters were held
constant along the year λE was overestimated at drier sites. To address
this shortcoming, Zhang et al. (2008) introduced a variable-soil moisture
fraction dependent on rainfall, and optimized gsx using outputs from an
annual water balance model or a Budyko-type model (Zhang et al.,
2008, 2010). Although this represented a step-forward for operational
applications, results at dry sites were still poorer than at more humid
sites (Zhang et al., 2008, 2010).

A solution to overcome those parameterization problems using
the Penman–Monteith equation, was the simplification proposed by
Priestley and Taylor (1972) (PT) for equilibrium evapotranspiration
over large regions by replacing the surface and aerodynamic resis-
tance terms with an empirical multiplier αPT (Zhang et al., 2009).
The PT equation is theoretically less accurate than PM although uncer-
tainties in parameter estimation using PM can result in higher errors
(Fisher et al., 2008). Fisher et al. (2008) proposed a model based on
PT to estimate monthly actual λE. The authors used biophysical con-
straints to reduce λE from amaximum potential value, λEp, in response
to multiple stresses. One advantage of this approach is that it does not
require information regarding biome-type or calibration with field
data. The modeling framework can be seen as conceptually similar to
the so-called Production Efficiency Models (PEM) for estimating GPP
(Gross Primary Productivity) (Houborg et al., 2009; Monteith, 1972;
Potter et al., 1993; Verstraeten et al., 2006a) where maximum light
use efficiency (ε) of conversion of absorbed energy fAPAR into carbon is
reduced below its maximum potential due to environmental stresses.
In fact, part of the formulation from the PT-JPL model has been intro-
duced into some PEM models (Yuan et al., 2010). The main model as-
sumption is that plants optimize their capacity for energy acquisition
in a way that changes in parallel with the physiological capacity for
transpiration (Fisher et al., 2008; Nemani & Running, 1989). This idea
is to some extent related to the hydrological equilibrium hypothesis
stating that in water-limited natural systems, plants adjust canopy de-
velopment to minimize water losses and maximize carbon gains
(Eagleson, 1986) but applied over shorter time-scales. The modeling
approach described above neglects the behavior of individual leaves
and considers the canopy response to its environment in bulk for
which it can be referred to as a top–down approach (Houborg et al.,
2009). Top–down approaches use simpler scaling rules compared to
bottom–up models that require detailed mechanistic descriptions
of leaf-level processes up-scaled to the canopy (Schymanski et al.,
2009). Although top–down approaches require less parameters than
bottom–up approaches, they are subjected to a higher degree of empir-
icism with high uncertainty on the functional responses of ecosystem
processes to environmental stresses (Yuan et al., 2010).

The use of global satellite vegetation products and meteorological
gridded databases as input to top–down approaches based on the PM
or the PT equations has made possible to obtain regional estimates of
evapotranspiration (Mu et al., 2007). However, there are still limitations
regarding the use of such databases. One hand, existing global climatic
data sets interpolated from observations such as the Climatic Research
Unit data set (CRU, University of East Anglia) are available on amonthly
but not a daily basis (New et al., 2000). Moreover, data from reanalyses
such as ECMWF (European Centre for Medium-Range Weather fore-
casts) or NCEP/NCAR present coarse spatial resolutions (≈1.25°) (Mu
et al., 2007) being desirable to minimize the use of climatic data when
possible.

On the other hand, PM and PT satellite-based approaches have taken
advantage of optical remote sensing data to estimate vegetation proper-
ties but thermal remotely sensed data has been used onlymarginally and
with coarse spatial resolution data such as the microwave AMSR-E at
0.25° (Miralles et al., 2011). Incorporation of longwave infrared thermal
data at spatial resolutions of 1–3 km available from the MODIS
(Moderate Resolution Imaging Spectroradiometer) or the SEVIRI
(Spinning Enhanced Visible and Infrared Imager) sensors could help
to track changes in surface conductance (Berni et al., 2009; Boegh et
al., 2002), soil evaporation (Qiu et al., 2006), surface water deficit
(Boulet et al., 2007; Moran et al., 1994) or soil water content (Gillies &
Carlson, 1995; Nishida et al., 2003; Sandholt et al., 2002). In relation
to soil moisture a promising approach is the mapping of soil moisture
based on soil thermal inertia (Cai et al., 2007; Sobrino et al., 1998;
Verstraeten et al., 2006b), following the early work of Price (1977)
and Cracknell and Xue (1996).

The objective of this work was to adapt and evaluate a daily version
of the PT-JPL model and introduce a new formulation for soil moisture
based on the thermal inertia concept. The aim is to minimize the need
for climatic reanalyses data by incorporating thermal remote sensing
information in order to facilitate future model regionalization. The
PT-JPL model in its original formulation has proven to be successful
over 36 Fluxnet sites at monthly time scales, ranging from boreal to
temperate and tropical ecosystems. However, none of those included
semiarid vegetation with annual rainfall below 400 mm (Fisher et al.,
2008, 2009). Model performance using in-situ and satellite data was
compared with field data from Eddy Covariance systems at two semiarid
sites: an open woody savannah in the Sahel (Mali) and Mediterranean
tussock grassland (Spain). Finally, to place the results in the context of
global drylands, model results were compared to published results from
similar models using remote sensing at dryland savanna and grasslands
sites across the globe.

2. Field sites and data

Two field sites (Fig. 1) have been used to test the model in semiarid
conditions: an open woody savannah in Mali and tussock grassland in
Spain. A general description of the sites is included in Table 1.
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Fig. 1. Location of the two study sites: an openwoody savanna (15.34°N, 1.48°W) in the Sahel (Agoufou site,Mali) andMediterranean tussock grassland (36.94°N, 2.03°W) in Spain (Balsa
Blanca site). The map with Köppen–Geiger climate classes (Kottek et al., 2006) overlaps country boundaries. The Mediterranean site presents cold semiarid climate (BSk) and the
Sahelian site Arid desert hot climate (BWh).
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2.1. Sahelian open woody savannah site

The Agoufou site is an open woody savannah, homogeneous over
several kilometers, with trees representing less than 5% of vegetation
cover. A comprehensive description of the site is provided by Mougin
et al. (2009). The top 0–6 cm of the soil is 91% sand, 3.3% silt and 4.6%
clay (de Rosnay et al., 2009). The region experiences a single rainy
season with most precipitation falling between late June and mid
September followed by a long dry season of around 8 months.

In-situ data for the 2007 growing seasonwere providedby theAfrican
Monsoon Multidisciplinary Analyses (AMMA) project. Sensible heat
flux was measured with sonic anemometers (CSAT) measuring the
three vector components of the wind at 20 Hz. Latent heat fluxes
were measured with the Eddy–Covariance system (Campbell CR3000
and CSAT3–LiCor7500, Campbell Scientific Inc. and Li-Cor Inc.). The
four components of the net radiation were measured with a CNR1
(Kipp and Zonen CNR1, Delft, Holland).
Table 1
General characteristics of the two instrumented field sites in the Sahel region and in the M

Site name
(location)

Vegetation type Mean annual
rainfall

Soil type D

Agoufou (Mali)
(15.34°N, 1.48°W)

Open woody savannah 375 mm Fixed dunes-Arenosol C
Z

Balsa Blanca (Spain)
(36.94°N, 2.03°W)

Tussock grassland 370 mm Calcium crusts-Mollic
leptosol

S

Measurement height for the flux sensors is 2.2 m. Soil heat fluxes
were computed from soil temperature measurements. See Timouk et
al. (2009) for more details. Wind speed and direction (Vector A100R),
land surface temperature (Everest 4000.4zl), air temperature and
humidity (HMP 45C, Vaisala) and precipitation (Delta T, RG1) were
also measured. Time domain reflectometry sensors (Campbell
CS616, Campbell Scientific Inc., USA) measured volumetric Soil Water
Content at several depths with the shallower probe, the one used in
this work, located at 5 cm.

Leaf Area Index (LAI) and fractional cover were monitored approxi-
mately every 10 days during the 2007 growing season (DOY 184 to
269) along a 1 km long vegetation transect using hemispherical photo-
graphs. LAI was validated using destructive measurements (Mougin et
al., 2009). Comparisons with MODIS LAI during three years produced
r2=0.82 and RMSE 0.26 (Mougin et al., 2009). The fraction of vegeta-
tion cover is 50%, with a maximum average height of 0.4 m for the her-
baceous cover. A period starting prior and finishing after the rains was
editerranean basin.

ominant herbaceous species Dominant woody species

enchrus biflorus, Aristida mutabilis,
ornia glochidiata, Tragus berteronianus

Acacia raddiana, Acacia senegal,
Combretum glutinosum, Balanites aegyptiaca,
Leptadenia pyrotechnica

tipa tenacissima Thymus hyemalis, Chamaerops humilis L.,
Brachypodium retusum (Pers.) P. Beauv,
Ulex parviflorus
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evaluated (DOY 170 to 315). No gap filling has been performed. Gaps in
flux data are present notably in late July to early August (Fig. 2).

2.2. Mediterranean grassland site

Balsa Blanca site is a tussock grassland steppe dominated by Stipa
tenacissima L. (91% cover) located within the “Cabo de Gata-Níjar
Natural Park” (Spain) the only subdesertic protected region in Europe,
with a semiarid Mediterranean climate. Annual rainfall is highly vari-
able from year to year with mean values of 375 mm and mean annual
temperature of 18.1 °C. In the closer long-term station the average
was 200 mm (records from the closest meteorological station,
Nijar, distant 30 km) (Rey et al., 2012) with rainfall falling mostly
in fall and winter and a prolonged summer drought. The fraction of
vegetation cover is 60%, with mean average height of 0.7 m. The soil is
classified as Mollic Leptsol (WRB) (World Reference Base for Soil Re-
sources, FAO 1998) with depth ranging from 15 to 25 cm.

In situ data were acquired during the 2011 growing season between
January and June. This period should capture most of the annual vari-
ability in λE although it is only part of a complete growing season that
starts in fall until early summer (Fig. 2). Latent and sensible heat fluxes
were measured with respective Eddy Covariance (EC) systems using a
three-dimensional sonic anemometer (CSAT-3 Campbell Scientific Ltd)
and an IRGA (open-path infrared gas analyzer, Li-Cor, Li-7500, Campbell
Scientific Ltd). The measurement heights were 3.5 m. Sensors mea-
sured at 10 Hz and fluxes were estimated and stored half-hourly
applying the corrections for axis-rotation (Kowalski et al., 1997;
Mcmillen, 1988) and density fluctuations (Webb et al., 1980).

Net radiation was obtained using NR-Lite (Kipp&Zonen). Four soil
heat flux plates (HFP01SC; Campbell Sci. Inc.) were placed at 8 cm
depth, two under plant and two under bare soil, and connected via
multiplexer to a datalogger. The soil heat flux at the surface was deter-
mined by adding the measured heat flux at 8 cm (G) to the energy
stored in the layer above the heat plate estimated from soil temperature
and soil moisturemeasurements. Soil temperature wasmeasured using
soil thermocouples (TCAV) at 2 and 6 cm depth adjacent to the heat
flux plates. Land surface temperature wasmeasured with three Apogee
sensors over bare soil, vegetation, and a composite of bare soil and
vegetation, (IRTS-P). Air temperature and relative humidity were
measured with thermohygrometers (HMP45C, Campbell Scientific Ltd.).
Rainfall was measured using a tipping bucket rain gage of 0.25 mm of
resolution (ARG100 Campbell Scientific INC., USA). Time domain reflec-
tometry sensors (CampbellCS616, Campbell Scientific Ltd) measured
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Fig. 2. Volumetric soil water content % (SWC), rainfall (mm), evapotranspiration (λE) in
(Agoufou) in 2007 and in the Mediterranean grasslands (Balsa Blanca) in 2011. SWC probe
Volumetric (m3m−3) soil water content (SWC) under bare soil and
under plants with 4 cm being the top most measured soil moisture.

Fig. 2 shows the seasonal dynamics for volumetric soil water content,
expressed in % (SWC), rainfall (mm), evapotranspiration (λE) in Wm−2,
and NDVI for the two study sites.
2.3. Satellite data

NDVI data were acquired from the Moderate Resolution Imaging
Spectroradiometer (MODIS) Terra and Acqua sensor products
MOD13Q1 and MY13Q1 (collection 5) over the two study sites. This
product consists of 16-day composites of 250 m pixel (Huete et al.,
2002). LAI and fPAR products from Terra and Acqua (MOD15A2,
MY15A2) consisting of 8-day composites of 1 km pixel (collection 5)
(Myneni et al., 2002) were acquired aswell. To get daily estimates a lin-
ear interpolation using both Terra and Acqua values was performed
within the 8-days or 16 day interval in each case.

Land Surface Temperature (LST) and broadband surface albedo (α)
products used in this work were developed by the Satellite Application
Facility for Land Surface Analysis (LSA SAF) with data from the Spinning
Enhanced Visible and Infrared Imager (SEVIRI) radiometer, onboard of
the MSG (Meteosat Second Generation). The MSG–SEVIRI sensor in-
cludes 12 separate channels and 15 min temporal resolution making
it attractive for applications requiring intra-daily information. As for
any geostationary satellite the trade-off is the low spatial resolution of
4.8 km at nadir (spatial sampling is 3 km) and large view angles
(Schmetz et al., 2002). The LST algorithm is based on a generalized
split window, following (Wan & Dozier, 1996) formulation adapted to
SEVIRI data (Trigo et al., 2008). It requires information on clear-sky
conditions and TOA brightness temperatures for the split-window
channels 10.8 mm and 12.0 mm. Channel and broadband emissivity
are estimated as a weighted average of that of bare ground and vegeta-
tion elements within each pixel using the fraction of vegetation cover
derived from NDVI (Trigo et al., 2008). The albedo product is based on
shortwave channels at 0.6, 0.8 and 1.6 μm. It has an effective temporal
scale of 5 days and updated on a daily basis using cloud-free reflectance
observations that are corrected for atmospheric effects using the simpli-
fied radiative transfer code SMAC (Geiger et al., 2008). Dynamic infor-
mation on the atmospheric pressure and total column water vapor
comes from the European Centre for Medium-rangeWeather Forecasts
(ECMWF) NWP model. Cloud identification and cloud type classifica-
tion are used in the processing of all LSA SAF products.
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3. Methods

3.1. PT-JPL-daily model description

The daily model proposed here (hereafter PT-JPL-daily) is a modified
version of the algorithm described in Fisher et al. (2008) where “λE” is
partitioned into canopy transpiration (λEc) and soil evaporation (λEs)
(Eq. 1). In this paper, we did not consider interception evaporation
(λEi), or evaporation from awet canopy surface, as in low LAI ecosystems
it accounts for a limited amount of the total water flux (Mu et al., 2011)
and in turn using it requires observations of relative humidity at the
sites. However, preliminary model evaluations showed that including it
did not improve or worsen the results.

Actual λE is calculated based on potential evapotranspiration of soil
(λEps) and canopy (λEpc) which are reduced from their potential level
using different constraints (multipliers) based on plant physiological
status and soil moisture availability (Fisher et al., 2008). λEp was calcu-
lated using Priestley and Taylor (1972) equation.

λE ¼ λEc þ λEs: ð1Þ

Three plant physiological constraints were considered to regulate
evapotranspiration: green canopy fraction, a plant temperature con-
straint (fT) and a plant moisture constraint (fM) (Eq. 2).

λEc ¼ f gf T f MλEpc: ð2Þ

All the equations and variables are described in Table 2. Considering
that the physiological capacity for energy acquisition should be adjusted
with the capacity for transpiration, the green canopy fraction, that repre-
sents the canopy fraction actively transpiring, should reflect an upper
limit for transpiration. fgwas estimated as the ratio between intercepted
and absorbed photosynthetic active radiation fAPAR/fIPAR (Table 2). The
original model formulation for estimating LAI and fAPAR using NDVI and
the extinction of radiation equation (see Table 2) was used as well as
new estimates of LAI and fAPAR derived from MODIS standard products.
Table 2
Equations and variables involved in estimating PT-JPL-daily model biophysical constraints, p
Active Radiation, fIPAR the fraction of intercepted photosynthetically active radiation, Topt is
fAPARMAX is maximum fAPAR, SWC, Soil Water Content (m3 m−3), RH is relative humidity (%), V
(°C−1), ATImin is the seasonal minimum ATI, ATIMAX is the seasonal maximum ATI. Rn is da
kPAR=0.5 (Brownsey et al., 1976); m1=1.16; b1=−0.14; (Myneni & Williams, 1994); m2

β=1 kPa, αPT=1.26 Priestley–Taylor coefficient; Δ is the slope of the saturation-to-vapor
for the cases when the formulation was used in Fisher et al. (2008) or this study if the form

Variable Description Equa

Biophysical
constraints

fg Green canopy fraction fg ¼

fT Plant temperature constraint
f T ¼
⋅
1þ
h

fM Plant moisture constraint fM ¼

fSM Soil moisture constraint • fS

• fSM

• f S

Plant variables fAPAR PAR fraction absorbed by green vegetation • fAP
• fAP

fIPAR PAR fraction intercepted by total vegetation fIPAR
fc fractional vegetation cover fc=
LAI Leaf Area Index • LA

• LA
Energy
variables

Rns Net radiation to the soil Rns

λEpc Priestley–Taylor potential evapotranspiration for canopy λEpc
λEps Priestley–Taylor potential evapotranspiration for soil λEps
The plant temperature constraint (fT) accounts for reductions in
photosynthetic efficiency when plants grow at temperatures departing
from their optimum temperature range (Potter et al., 1993). fT depends
on the optimum air temperature for plant growth Topt (°C) and Tam (°C)
the average daily temperature. In the original model, Topt was assumed
to coincidewithmaximum canopy activity andwas estimated as the air
temperature of the month with the highest NDVI and radiation and
minimum vapor pressure deficit (VPD) (June et al., 2004). However,
this approach in Mediterranean semiarid environments is prone to
unrealistic Topt values due to the decoupling between warm and
rainy seasons, with themaximumpeak for vegetation activity occurring
in late winter (Garcia et al., in review). In a preliminary evaluation we
observed that the fT from the Carnegie–Ames–Stanford Approach
model (CASA) performed better. In the CASAmodel fT has an asymmet-
ric bell shape reflecting a higher sensitivity to high than to low temper-
atures (see Table 2 for equations) (Potter et al., 1993). To avoid
calibrations of Topt depending on the site, we fixed Topt in 25 °C, a
value that has been applied in global modeling studies across different
types of biomes (Yuan et al., 2010).We checked in preliminary analyses
that variations of ±5 °C around this value of Topt did not affect model
outputs.

The third constraint for λEc was a plant moisture constraint, fM,
defined as the relative change in light absorptance with respect to the
maximum (fAPAR/fAPARMax). This approach assumes that plant absorp-
tance decreases mostly due to moisture stress (Fisher et al., 2008).

The soil evaporation component was constrained by a soil moisture
limitation, fSM (Eq. 3).

λEs ¼ f SMλEps: ð3Þ

In this work, we evaluated an fSM estimate based on the thermal
inertia (TI) concept using Ts and albedo. Thermal inertia is a physical
property of soil at the land surfacemeasuring the thermal response of a
material to the changes in its temperature (Nearing et al., 2012). The
higher the TI the lower its diurnal temperature fluctuation. Estimating
lant variables and energy variables. fAPAR is the fraction of Absorbed Photosynthetically
optimum temperature for plant growth (25 °C), Tam (daily mean air temperature, °C),
PD is the vapor pressure deficit (kPa), ATI is the observed apparent thermal inertia index
ily net radiation (Wm−2). Values for parameters: kRn=0.6 (Impens & Lemeur, 1969);
=1.0; b2=−0.05 (Fisher et al., 2008), γ (psychrometric constant)=0.066 kPa C−1;
pressure curve (Pa K−1). In the reference column it has been added original model
ulation has been implemented in this study.

tion Reference

f APAR
f IPAR

Fisher et al. (2008) original model

1:1814⋅ 1þ e0:2⋅ Topt−10−Tamð Þh i−1

e0:3 −Topt−10−Tamð Þi−1
Potter et al. (1993) this study

f APAR
f APARMax

Fisher et al. (2008) original model

M�SWC ¼ 1− SWC−SWCmin
SWCMax−SWCmin

� �
Fisher et al. (2008) original model

−Fisher=RHVPD/β Fisher et al. (2008) original model

M−ATI ¼ ATI−ATImin
ATIMax−ATImin

� �
Verstraeten et al. (2006b) this study

AR−NDVI=m1⋅NDVI+b1 Myneni & Williams (1994) original model
AR−MODIS Myneni et al. (2002) this study
=m2⋅NDVI+b2 Fisher et al. (2008) original model
fIPAR Campbell & Norman (1998) original model
INDVI=−Ln(1− fc)/kPAR Norman et al. (1995); Ross (1976) original model
IMODIS Myneni et al. (2002) this study
¼ Rn⋅e −kRnLAIð Þ Norman et al. (1995); Ross (1976) original model
¼ αPT

Δ
Δþγ Rn−Rnsð Þ Norman et al. (1995) original model

¼ αPT
Δ

Δþγ Rns−Gð Þ Norman et al. (1995) original model



Table 3
Ranges of variation for input parameters and variables in PT-JPL-daily model. For Rn, G,
NDVI and Tair ranges of ±10% around monthly means and annual mean were considered.
For the constant model parameters: m1, b1, m2, b2, kRn, and kPAR, the range of uncertainty
was based on values used in the literature. For the soil moisture constraint (fSM) and the
plant temperature constraint (fT) a range of ±25% around the mean was considered.
Description of variables and parameters can be found in Table 2.

Input var Range Reference

Tair ±10% of mean value This study
Rn ±10% of mean value This study
G ±10% of mean value This study
fT ±25% of mean value This study
fSM ±25% of mean value This study
NDVI ±10% of mean value This study
m1 [1.16, 1.42] This study
b1 [−0.039, −0.025] This study
m2 [0.9, 1.2] Fisher et al. (2008)
b2 [−0.06, −0.04] Fisher et al. (2008)
kRn [0.3, 0.6] Ross (1976)
kPAR [0.3, 0.6] Ross (1976)
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thermal inertia requires knowing thermal conductivity of the material
(K), its density (ρ) and specific heat (C) (Price, 1977).

Increasing soil moisture content modifies soil thermal conductivity
and reduces the diurnal surface temperature fluctuation (Verstraeten
et al., 2006b). In early studies, this diurnal Ts variation was linked theo-
retically to thermal inertia resulting in the apparent thermal inertia
(ATI) index (Price, 1977). Estimating thermal inertia using remote sens-
ingwas first introduced by Price (1977) and expanded by Cracknell and
Xue (1996). Sobrino et al. (1998) and Lu et al. (2009). In this study we
estimated ATI following Verstraeten et al. (2006b) which was based
on Mitra and Majumdar (2004) (see Eq. 4). ATI relies on broadband
albedo (α), and the difference between maximum daytime (TsDMax)
and minimum nighttime (TsDmin) surface temperature, and a solar
correction factor C (Eq. 5) that normalizes for changes in solar irradi-
ance with latitude, ϑ and the solar declination angle φ, the angle be-
tween sun rays and the plane of the Earth's equator. It is assumed that
ATI reflects both soil and canopy water content if the Ts includes both
soil and vegetation components (Tramutoli et al., 2000; Verstraeten et
al., 2006b). In fact, a composite Ts might track better changes in
root-zone SWC as the canopy temperature responds rapidly to changes
in root zone SWC, which can be decoupled from the bare soil surface
SWC. From the 15 minute Ts data the minimum (TsDmin) andmaximum
(TsDMax) values from each day were extracted. Observations flagged as
cloudy in the METEOSAT LST data and days when the midday observa-
tion was missing were excluded from the analyses. A smoothing proce-
dure averaging with the prior and following day was applied to the ATI
assuming that the soil moisture conditions could be interpolated be-
tween subsequent days and to remove noise.

ATI ¼ C
1−α

TsDMax−TsDmin
ð4Þ

C ¼ sinϑ sinφ⋅ 1− tan2ϑ⋅ tan2φ
� �

þ cosϑ⋅ cosφ⋅ arccos − tanϑ⋅ tanφð Þ:
ð5Þ

Where ϑ is latitude, and φ is solar declination estimated using the
method of Iqbal (1983).

However, the coupling between ATI and soil moisture is not
straightforward. Thermal inertia could be converted directly to soil
moisture provided that soil properties are known (Lu et al., 2009;
Minacapilli et al., 2009; Van Doninck et al., 2011). Since those proper-
ties only change over geologic time scales, short-term changes in ATI can
be linked to changes in soil moisture using time-series (Van Doninck et
al., 2011). Verstraeten et al. (2006b) related soil moisture to remotely
sensed ATI derived from METEOSAT imagery by assuming that the
minimum and maximum seasonal ATI (ATImin and ATIMax) correspond
to residual and saturated soil moisture contents obtaining fSM-ATI (see
equation in Table 2).

To evaluate fSM derived from ATI two additional formulations of fSM
used in the original model formulation have been also tested (see
Table 2). The first is based on field measurements of Volumetric soil
water content (SWC) (fSM-SWC), where SWC was rescaled between a
minimum (SWCmin) and a maximum value (SWCMax) (Fisher et al.,
2008). In our case, SWCmin was estimated as the minimum value of the
dry season. SWCMax was estimated as the value of SWC in the 24 h after
a strong rainfall event, which can be considered as an estimate of the
field capacity. If SWC>SWCMax then fSM-SWC=1. In the Mediterranean
site, the 2006–2011 period was used to extract SWCmin and SWCMax as
the period used to apply PT-JPL-daily was not a complete season.

The second approach to estimate fSM was the original PT-JPL model
formulation based on the link between atmospheric water deficit and
soil moisture (fSM-Fisher) (Bouchet, 1963; Morton, 1983). This link is
compromised if the vertical adjacent atmosphere is not in equilibrium
with the underlying soil (Fisher et al., 2008). The β parameter indicates
the relative sensitivity of soil moisture to VPD (see Table 2).
3.2. Global sensitivity analyses (EFAST) approach

Sensitivity analysis can be used to evaluate the effects of uncertainty
on input or parameters on model output or to evaluate which variables
or parameters have the largest effect onmodel output (Matsushita et al.,
2004). In this study Global Sensitivity Analysis (GSA) of PT-JPL-daily
model was performed using Extended Fourier Amplitude Sensitivity
Test (EFAST) (Saltelli et al., 1999). EFAST was originally developed by
Cukier et al. (1978) and improved by Saltelli et al. (1999). The advan-
tage of EFAST compared to traditional sensitivity analyses such as
one-at-a-time (OAT) or experimental design (ED) is that it allows
several input variables to vary simultaneously considering interactions
among them. It can be used for non-linear and non-monotonic models
providing similar results to more complex methods based as well on
analyses of variance but being computationally more efficient (Saltelli
et al., 1999). A Fourier decomposition is used to obtain the fractional
contribution of the individual input factors to the variance of the
model prediction (Campolongo et al., 2000).

To identify the relative importance of each model input in terms of
its contribution to the output variance of daily evapotranspiration, per-
turbations for each variable were applied around the mean value of the
growing season and also around meanmonthly values. Rn, G, NDVI and
Tair were varied by ±10% around their monthly means and annual
mean based on reported uncertainty of field measurements for those
variables (Garcia et al., 2008). For the constant model parameters: m1,
b1, m2, b2, kRn, and kPAR, the range of uncertainty was based on values
used in the literature (Table 3). A perturbation of ±25% around the
mean was considered for the soil moisture constraint (fSM) and the
plant temperature constraint (fT).
3.3. Evaluation of the PT-JPL-daily evapotranspiration model

PT-JPL-daily was run using a combination of field and remotely-
sensed data as inputs to parameterize the biophysical constraints and
partition the energy between soil and canopy (Table 4). Two versions
(the original version and one version using MODIS products) of LAI
and fAPAR were tested which modify two of the plant constraints fg,
and fM as well as the energy partition between soil and vegetation
(Table 2). In addition, three versions of fSM were used as explained in
the model description section (Table 2). Model results were compared
with λE from Eddy Covariance fluxes and the coefficient of determina-
tion (r2), Mean Average Error (MAE), the bias, the RMSE (Root Mean
Square Error) and MPE (Mean Absolute Percentage Error) were used
as indicators of model performance. To compare modeled λE with λE
measurements from Eddy Covariance the energy balance from the



Table 4
Eight versions of PT-JPL-daily (FD) were run based on different combinations of equations and data used for the variables: fSM, fIPAR and LAI. Rn is Net radiation (Wm−2), G is soil heat
flux (Wm−2), Tair, air temperature (°C), SWC, Soil Water Content (%), VPD, Vapor pressure deficit (kPa), RH, Relative humidity (%), Ts, Surface temperature (°C), LAI (Leaf Area
Index), fPAR (fraction of Photosynthetic Active Radiation) and α broadband surface albedo. The soil moisture constraints used were: fSM-SWC (from measured volumetric soil
water content), fSM-Fisher (from atmospheric water deficit), and fSM-ATI (from apparent thermal inertia). Two different fAPAR and LAI were used (a) fAPAR-NDVI and LAINDVI (FDa
model versions) and (b) used fAPAR-MODIS and LAIMODIS (in FDb model versions). All equations are described in Table 2.

Algorithm version Algorithm name fSM fAPAR and LAI Common variables

Estimate Data/source Estimate Data/source Data/source

1 FDaSWC fSM-SWC SWC/in situ fAPAR-NDVI
LAINDVI

NDVI/MODIS Rn, G, Tair/in situ NDVI/MODIS

2 FDbSWC fAPAR-MODIS

LAIMODIS

fPAR, LAI/MODIS

3 FDaFisher fSM-Fisher VPD, RH/in situ fAPAR-NDVI
LAINDVI

NDVI/MODIS

4 FDbFisher fAPAR-MODIS

LAIMODIS

fPAR, LAI/MODIS

5 FDaATI-in situ fSM-ATI Ts, α/in situ fAPAR-NDVI
LAINDVI

NDVI/MODIS

6 FDbATI-in situ fAPAR-MODIS

LAIMODIS

fPAR, LAI/MODIS

7 FDaATI-MSG Ts, α//MSG fAPAR-NDVI
LAINDVI

NDVI/MODIS

8 FDbATI-MSG fAPAR-MODIS

LAIMODIS

fPAR, LAI/MODIS
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Eddy Covariance data should be forced to zero (Twine et al., 2000). We
used the criteria of preserving the Bowen ratio that assumes that the
Bowen ratio (H/λE) is well measured by the EC system and the
closure error is proportionally distributed into λE and H (Twine
et al., 2000).

The evaluation results (r2, errors and biases) are presented in four
steps. First, model performance using measured soil moisture constraint
(fSM-SWC) was analyzed. Here, the accuracy of the two different versions
for LAI and fAPAR was compared as, in principle, this model version using
fSM-SWC should be themost precise from the point of view of soil moisture
constraint and can be used as a benchmark. In the second step, the feasi-
bility of using fSM-Fisher, from atmospheric variables at daily time-scale in
semiarid conditions was evaluated. In the third step, the performance of
the model run with the apparent thermal inertia index fSM-ATI from
in-situ and also satellite data was evaluated. In this three steps the two
versions for estimating LAI and fAPAR were evaluated as well resulting in
a total of eight algorithm versions evaluated (see Table 4). Finally, to
placemodel results in the context of global drylands, our accuracy results
were compared to published accuracy results from other models that
used remote sensing information at the same and at other dryland
savanna and grasslands sites across the globe. In those cases when
model outputs were provided by the authors at 30 minutes time
step, they where aggregated at daily time scale and compared with
the Eddy Covariance data to have comparable statistics.

4. Results and discussion

4.1. Global sensitivity analyses (EFAST) approach

Considering the variability around mean annual conditions, the
contribution to uncertainty was less than 20% for most parameters
and variables in the Sahelian savanna. The greatest uncertainty was
due to two of the biophysical constraints: fSM and fT with 22.19%
and 17.68% respectively (total effect). Five other variables involved
in LAI estimation and energy partition between soil and canopy contrib-
uted around 12% to model uncertainty (Fig. 3). However, the relative
importance of each variable depends on the time of the year. At the be-
ginning of the season, λEwasmost sensitive to accuracy in fSM reaching
the maximum value of explained variance among all variables and
months (40%). During the maximum peak of NDVI, in the middle of
the season, the greatest sensitivity was due to fT, and m1 (involved in
fM and fg estimates via fAPAR). During the senescent phase, the model
was more sensitive to accuracy in kPAR and kRn, involved in energy
partition into soil and vegetation.

Under annual Mediterranean conditions, most of the uncertainty
was related to the partition of energy between soil and vegetation,
shown by the highest sensitivity to the two coefficients of extinction
of radiation: kPAR (50%) involved in LAI estimates, and kRn (20%) both
contributing to estimate the net radiation reaching the soil component.
This is similar to the situation during the senescent phase in the Sahel.
Seasonally, the relative importance of each variable was similar to the
annual pattern, except in January whenmodeled λEwasmore sensitive
to accuracy in Rn.

Fig. 3 shows how in both ecosystem types, mean effect and total
effect (that considers interactions) on evapotranspiration were very
similar with differences around 1–2%, indicating low effect of variable
interactions.
4.2. Evaluation of the PT-JPL-daily evapotranspiration model with Eddy
Covariance data

4.2.1. Soil moisture constraint from measured soil moisture (fSM-SWC)
In the Sahelian savanna the performance of PT-JPL-daily λE

model using measured SWC (fSM-SWC) was similar regardless of the
fAPAR and LAI estimate used (FDaSWC or FDbSWC) (r2=0.85–0.86 and
MAE=14.14–13.54) (Table 5 and Fig. 4a, b). In the Mediterranean
grasslands, both the coefficient of determination and errors were
also similar regardless of the fAPAR and LAI used (r2=0.75–0.74;
MAE=10.66–11.44) (Table 5 and Fig. 5a, b). Therefore, PT-JPL-daily for-
mulation is capable to reproduce thedynamics ofλE in theMediterranean
grasslands, as it explained75%of theλE variance. Considering that the un-
certainty of the energy balance closure from Eddy Covariance data in this
Mediterranean site, calculated at daily time scale, represents 21.7% of the
available energy (Rn-G), the accuracy obtained with PT-JPL-daily using
fSM-SWC is closest to the one from Eddy Covariance. In the Sahel, the
model explains up to 86% of the variance, which considering that the
closure error is 5.78% of the available energy at daily scale is also close
to the instrumental accuracy. However, in this site during the growing
season there was a systematic underestimate of λE during the period
of maximum growth followed by an overestimate, independently of
the fAPAR and LAI used (Fig. 4a and b).
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To assess whether this mismatch in the Sahelian site could be related
to the LAI and fPAR estimates, we compared satellite LAI estimates with
field estimates and also evaluated the evapotranspiration model ran
with field estimates for LAI and fPAR. Comparison of LAI satellite products
with field estimates (Fig. 6a) showed better correlations with MODIS
Table 5
Evaluation of PT-JPL-daily λE with Eddy Covariance data. In the savanna the results
have been evaluated between June and December 2007 and in the Mediterranean
grasslands between January and June 2011. Model versions starting with “FDa” were
run with fAPAR-NDVI and LAINDVI and with “FDb” with fAPAR-MODIS and LAIMODIS. fSM-SWC is
the soil moisture constraint derived from measured volumetric soil water content, and
fSM-ATI from apparent thermal inertia. Surface temperature and albedo could be acquired
from in-situ sensors or from satellite (MSG) sensors.

Site fSM Model
version

r2 MAEa Biasb RMSEc MAPD
(%)d

Sahelian savanna
(all dates)

In-situ FDaSWC 0.85 14.14 7.59 21.45 22.69
FDbSWC 0.86 13.54 4.02 20.39 21.72
FDaATI-in situ 0.82 20.69 −1.48 23.88 33.20

Satellite FDbATI-in situ 0.83 19.72 −7.14 23.10 31.65
FDaATI-MSG 0.79 23.11 16.52 30.55 37.09
FDbATI-MSG 0.80 20.21 11.78 26.53 32.43

Mediterranean
grasslands
(growing season)

In-situ FDaSWC 0.75 10.66 10.10 12.43 30.89
FDbSWC 0.74 11.44 10.96 13.2 33.16
FDaATI-in situ 0.58 9.66 5.70 11.10 28.01

Satellite FDbATI-in situ 0.57 9.85 6.21 11.58 28.57
FDaATI-MSG 0.32 10.16 −3.01 14.48 29.46
FDbATI-MSG 0.31 10.78 −3.80 15.03 31.26

a Mean absolute difference MAE=(∑i=1
n |Oi−Pi|/n).

b Bias bias=(∑i=1
n (Oi−Pi))/n.

c Root mean square error RMSE=[(∑i=1
n (Oi−Pi)2/n)]1/2.

d Mean absolute percentage difference MAPE ¼ 100
bO> ∑n

i¼1 Oi−Pij j=n� �
, where Pi is the

model-predicted value, Oi is the observed value, bO> is the mean observed value, n is
the number of observations.
LAI (r2=0.93) than for LAI estimated from NDVI (r2=0.71). Although
MODIS LAI underestimated the maximum peak and overestimated LAI
during growing and senescence stages its phenology pattern matched
better with the field data than the LAI derived from NDVI (Fig. 6a). In
this case, the maximum LAI happened earlier in the season than the
fieldmaximum LAI, showing also greater overestimates during growing
and senescent phases. This could explain a slightly better performance
of the λE model using MODIS products during the growing season
(Table 6).

However, model outputs ran using field measured LAI, fc and fAPAR
(estimated as described in Mougin et al., 2009) did not improve
model performance (see Table 6). Therefore, using satellite products
for vegetation (LAI and fPAR) to run the model produce similar results
than using field vegetation estimates.

It seems that when vegetation is changing very rapidly around the
seasonal peak in the Sahel, the model can account for the general
pattern of λE but not for minor ups and downs observed in the
Eddy Covariance λE. Increasing the energy partition allocated to vegeta-
tion by using kRn of 0.75, a value obtained by optimization at the site
(Ridler et al., 2012), improved significantly the results (r2=0.76 vs r2=
0.68) (Table 6). Using this coefficient reduced the λE offset after the LAI
peak, but not before (Fig. 6b). It should be noted that field LAI estimates
(Fig. 7) present uncertainty as well, as they were interpolated between
thefield samplings, acquired every≈10 days. Thus, before themaximum
LAI peak (DOY=235) the previous field sampling was 10 days earlier,
making it possible to miss a higher and earlier maximum peak. In that
case, LAI underestimates would produce λE underestimates between
the periods DOY225 and DOY235 (Fig. 6).

These results suggest that themodel could benefit froman improved
energy partitioning between soil and canopy considering variable ex-
tinction coefficients and separate longwave and shortwave components
(Kustas & Norman, 1999), as well as from shorter-time scale estimates
of LAI and fPAR.
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4.2.2. Soil moisture constraint from atmospheric variables (fSM-Fisher)
Estimating λE using fSM-Fisher with the same parameterization as in

Fisher et al. (2008) (β=1; midday conditions) did not provide mean-
ingful results in the Mediterranean grasslands (r2~0.16) (Table 7). In
the savanna, correlations were better but well below those found for
fSM-SWC (r2=0.61–0.62) and with high biases around 25–29 Wm−2

(Table 4, Figs. 5 and 6). This constraint diagnosed the major water
stress during the growing season around DOYs 240–250. We evalu-
ated the sensitivity of fSM-Fisher to β values between 0.05 and 2, and
to the use of daily average or midday conditions for RH and VPD.
Table 7 shows the results when themodel was runwith two different
values of β. They are shown in the table as they provided the best re-
sults in each site: β=0.1 kPa, that was applied at a global scale in Mu
et al. (2007), and β=1 kPa applied in Fisher et al. (2008).

In the savanna, the best results corresponded to β=1 kPa and
daily average conditions (r2=0.80; MAE=18.08 Wm−2). In the
Mediterranean grasslands PT-JPL-daily performed better using β=0.1
(Table 7), especially for midday conditions (r2=0.64–0.53) although
λE was systematically underestimated (biases≈15–17 Wm−2). These
results suggest a stronger control of atmospheric conditions on soil
moisture changes in the Mediterranean conditions than in the Sahel.
Therefore, parameterization using fSM-Fisher should be tuned according
to the conditions in each site for successful results.

4.2.3. Soil moisture constraint from apparent thermal inertia (fSM-ATI)
Using in-situ data, model performance in the savanna for the thermal

inertia index fSM-ATIwaspractically equivalent to that using SWC (fSM-SWC),
with r2≈0.82 and slightly higher errors but similar or lower biases
(Table 5). Non significant differences were found when using fAPAR and
LAI from MODIS or a linear function of NDVI except from a slightly
lower biaswith the latter. At the endof the rainy season (DOY270), fSM-ATI

overestimated λE as even at an entirely dry soil the ATI index will never
become zero, since that would require an infinite temperature amplitude
(Van Doninck et al., 2011).

In the Mediterranean grasslands, statistics frommodel performance
using fSM-ATI from in-situ data were again not as good as than in the
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savanna. Although the r2 using fSM-ATIwas lower than those obtainedwith
fSM-SWC, the errors decreased and the biases were half of those obtained
with fSM-SWC. Similar to the savanna site, results were quite similar inde-
pendently of the LAI and fPAR estimate used to run the model.

When running the model using satellite MSG instead of in-situ
data for fSM-ATI, good results were obtained in the savanna site in
terms of r2 ~0.80 and MAE=23.1–20.1 Wm−2 (Table 5) but higher
biases were detected due to λE underestimates during the growing sea-
son (Fig. 4g, h). This was due to the fact that the diurnal Ts difference
(TsDMax−TsDmin) was always higher for MSG than for in-situ data
(Fig. 7), producing lower soil moisture (fSM) values.

In the Mediterranean grasslands, using MSG data instead of in-situ
to estimate fSM-ATI produced a greater loss of accuracy in r2 than in the
savanna although errors were similar and biases even lower than with
in-situ data (Table 5). On one hand, results using in-situ data were
worse to start with than in the savanna with correlations around
r2=0.58. As in the Mediterranean site λE is lower (Fig. 2) the
model is less tolerant to different error sources. Besides the noise appar-
ent in the MSG time-series, the comparability of the diurnal temperature
difference (TsDMax−TsDmin) between in situ and MSG data was more
problematic than in the savanna, with systematically higher MSG values
(Fig. 7). Additional inspection of Ts (15 min) observations between field
and satellite (Fig. 8) showed that differences between in-situ and satellite
were larger in the grasslands (MAE=2.43 °C) than in the savanna
(MAE=1.56 °C). In the Mediterranean site the sensor viewing angle is
42.68° while in the Sahel it is only 18.01°. This results in a larger scale
mismatch at the Mediterranean site between the satellite pixel and the
footprint of the in-situ sensors as well as greater atmospheric effects
due to a larger atmospheric path radiance.

The fSM-ATI approach is very sensitive to uncertainty in thermal data
since day and night Ts are used in the denominator (Cai et al., 2007;
Sobrino et al., 1998; Verstraeten et al., 2006b). Sensitivity to errors is
greater when Rn is higher which occurs at the end of the study period
in the Mediterranean site and the middle of the season in the Sahelian
site (Guichard et al., 2009) (see Figs. 4g, h and 5g, h). In fact, in the
Mediterranean grasslands, the lack of fit for fSM-ATI MSG (r2=0.32–0.31)
was caused by the last 10 days of the study period (see Fig. 5g and h).
Another important limitation of the ATImethodology is the vulnerability
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to noise introduced by meteorological conditions (Van Doninck et al.,
2011). Althoughwe have compared only dates without clouds according
to LSA SAF Quality Flags, inspection of SEVIRI images revealed a large
cumulus cloud affecting the adjacent pixel of the Mediterranean grass-
lands location unreported in the Quality Flags during the last 10 days of
the period. When excluding those days r2 increased to 0.64–0.66.

4.3. Comparison with other evapotranspiration models in global dryland
ecosystems

In the Sahelian savanna site, a Soil–Vegetation–Atmosphere
Transfer (SVAT) model forced with some of the same in-situ climatic
Table 6
Comparison of model performance during the period of field sampling (DOY: 184–269)
in the Sahelian savanna (Agoufou). Note that the period used is slightly shorter than for
Table 4, and explains why the model statistics for FDaSWC and FDbSWC differ slightly
from Model 4 statistics.

fAPAR, LAI Model version r2 MAEa Biasb RMSEc

fAPAR-NDVI, LAINDVI FDaSWC 0.67 20.53 9.50 26.29
fAPAR-MODIS, LAIMODIS FDbSWC 0.69 19.66 3.13 24.97
fAPAR-field, LAIfield FDfield-SWC (kRn=0.60) 0.68 21.39 11.26 26.10
fAPAR-field, LAIfield FDfield-SWC (kRn=0.75) 0.76 19.23 9.31 20.96

a Mean absolute difference MAE=(∑i=1
n |Oi−Pi|/n).

b Bias bias=(∑i=1
n (Oi−Pi))/n.

c Root mean square error RMSE=[(∑i=1
n (Oi−Pi)2/n)]1/2 where Pi is the model-predicted

value, Oi is the observed value, bO> is the mean observed value, n is the number of
observations.
inputs and vegetation parameters was calibrated using multi-
objective functions during the 2007 growing season (Ridler et al.,
2012).

Calibration of the SVAT model with in-situ Ts and SWC showed
better results (r2=0.81) (Table 8) than PT-JPL-daily during the
growing season calibrated with field data when correlations were
around r2=0.67–0.65 (see Table 6). Nonetheless, daily errors were
similar in magnitude and in fact underestimates were higher
(bias=12.26 Wm−2, not shown) than with PT-JPL-daily (Table 6).
These results are reasonable as the SVAT model, based on the
two-source Shuttleworth and Wallace (1985) model coupled to a
hydrological model, has a stronger physical basis (Overgaard,
2005). It requires several plant and soil parameters such as root
depth, minimum stomatal conductance, soil hydraulic conductivity,
as well as atmospheric variables including rainfall, wind speed, and
relative humidity at 15-minute time scale. However, calibration of
the SVAT model with both MSG and AMSR-E (Advanced Microwave
Scanning Radiometer) satellite data for operational purposes de-
creased correlations to r2=0.63 equivalent to PT-JPL-daily results
during the growing season (Tables 8 and 6). Results from a simpler
modeling approach based on the triangle relationship (Stisen et al.,
2008), estimated λE in the Sahel in a site with higher rainfall
(487 mm in 2005) with similar error levels to our Agoufou site and
also underestimates: RMSE=31.00 Wm−2. Correlations were higher
(r2=0.75) than in our model. Sun et al. (2011) model results based
on awater-deficit index in an open savanna in Sudanusing a combination
ofMODIS and SEVIRI products, produced similar results than PT-JPL-daily
runwith satellite products (r2=0.73 andMAE=26 Wm−2) considering
the fact that they acquired Tair from ECMWF weather forecast product
andweused in-situ Tair. In this case, thepeakλEwas also underestimated.
Although themodel capturesλE changes at the beginning of the season, it
seems that the transpiration processes in conditions of the Sahel are dif-
ficult to reproduce during the period of plant growth as different studies
underestimate λE during the growing season independently of model
complexity (Ridler et al., 2012). For instance, in the semiarid savanna in
Niger, the SVAT model SEt_HyS-savanna that presents an additional
tree-layer, systematically underestimated peak λE despite of added
model complexity and a high degree of parameterization (Saux-Picart
et al., 2009) (r2=0.66–0.64, their results have not included in Table 7
as they represent 30 min and not daily estimates).

Compared to other models using remote sensing information in the
sameMediterranean grasslands site, PT-JPL-daily performed better. For
instance, λE estimates using fSM-SWC were more accurate (r2=0.75;
MAE ~10 Wm−2) than those from a Penman–Monteithmodel adapted
by Leuning et al. (2008) (hereinafter PML). In the PML the soil evapora-
tion fraction was estimated with measured SWC, similarly to fSM-SWC

(Morillas et al., 2011, in review-a) (Table 8). In addition, the PML re-
quired optimization with field-measured λE and meteorological
variables such as VPD, or estimation of aerodynamic and surface
conductances. Two more operational parameterizations of PML for the
soil evaporation fraction based on measured rainfall produced also
poorer results for PML at the same site (Table 8) (Morillas et al., 2011,
in review), with similar results to PT-JPL-daily run with satellite MSG
data for fSM-ATI, and poorer than PT-JPL-daily run with fSM-ATI in-situ
(r2≈0.58, MAE≈10 Wm−2).

PT-JPL-daily λE estimates using MSG data for fSM provided also
better correlations than a triangle approach run with MODIS Ts and
NDVI (r2=0.24) despite of lower errors (MAE=3.56 Wm−2) (Garcia
et al., in review). λE estimates from the more physically based two
source model (TSM) (Norman et al., 1995) run with in-situ Ts from
exactly the same dataset and aggregated at daily-time scale were
also less accurate (r2=0.34–0.31) than PT-JPL-daily run with in-situ
or MSG Ts results (Morillas et al., in press) (Table 8). TSM results
using separate measurements of soil and vegetation Ts instead of
an aggregated measure did not improved the results (Morillas et
al., in press).
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Finally, to place the results from PT-JPL-daily ran with ATI in the
context of global drylands, we compared them with studies using
Penman–Monteith remote sensing (PM) or Priestley–Taylor (PT)
models over savannas and grasslands at dryland sites from different
regions of the globe (Table 8). These comparisons should always be
considered with caution as each model uses different input data
sources and both the environmental conditions and the vegetation
change. However, we have focused on the less accurate PT-JPL-daily
algorithm, amenable for regionalization (FDaATI-MSG) ran with satellite
MSG andMODIS data both for vegetation and soil moisture constraints,
leaving Tair and available energy as the only field input variables
used.

It can be seen in Table 8 that PT-JPL-daily FDaATI-MSG in the Sahelian
savanna (r2=0.80; RMSE=26.53 Wm−2) performed better in general
than PMmodels at other savanna sites although it has to be considered
that not all these models were forced with local meteorological inputs
(Table 8). Thus, the PML improved algorithm from Zhang et al. (2010)
where maximum stomatal conductance is optimized with a hydro-
meteorological model, showed lower r2 at two Australian savannas
(r2=0.53 and 0.49) less arid than our site (with 1764 mm and
526 mm of annual rainfall respectively) with the PT-JPL-daily error
within the range of those two sites (Table 8). Results from a PM
Table 7
Evaluation of PT-JPL-daily λE with Eddy Covariance data for different parameterizations of th
Results are shown for midday and daily average conditions for RH (relative humidity) and
performing combination of parameters in each site are shown in bold font. In the savanna resul
from January to June 2011. Model versions starting with “FDa” were run with fAPAR-NDVI and LA

Site Period Conditions β (k

Savanna (Agoufou) All dates daily 1

0.1

Midday 1

0.1

Mediterranean grasslands (Balsa Blanca) Growing season Daily 1

0.1

Midday 1

0.1
model in one of theAustralian savannas forcedwith in-situmeteorolog-
ical inputs were also poorer than our results (r2=0.23) (Cleugh et al.,
2007). Our algorithm performed also better than the MODIS product
for evapotranspiration (MOD16) of Mu et al. (2011), in three
woody savannas in arid regions of the USA (with r2 ranging from 0.06
to 0.61). Again, PT-JPL-daily errors were within Mu et al. (2011) ranges
of error at those savanna sites (RMSE=18.51–30.6 Wm−2). In another
global study Yuan et al. (2010) used a PM approach optimized with
Eddy Covariance λE from 21 sites. Their model in the Mediterranean
savanna of Tonzi performed worse (Table 8) than PT-JPL-daily using
fSM-ATI MSG in the Sahelian savannah although it should be noted that
they used air temperature from reanalysis. In the same savanna of
Tonzi ranch, Vinukollu et al. (2011) applied a daily version of the
PT-JPL model with the soil moisture constraint based on the water
vapor deficit although the error was low (RMSE=18.75 Wm−2) the
non-parametric Kendall's Tau (equivalent to Pearson-correlation coeffi-
cient) was 0.74 using only satellite input data.

Regarding the Mediterranean grassland site, our model λE results
using satellite data for soil moisture and vegetation (FDaATI-MSG)
(r2=0.32; RMSE=15.03 Wm−2) were in the range of the MOD16
algorithm of Mu et al. (2011) for two arid steppe grasslands in the
USA with r2=0.48 (Audubon) and 0.25 (Walnut Gulch) respectively
e soil moisture constraint derived from atmospheric water deficit: fSM−Fisher=RHVPD/β.
VPD (Vapor Pressure Deficit) and for β=0.1 kPa and β=1 kPa. Results from the best
ts were evaluated between June and December 2007 and in theMediterranean grasslands
INDVI and with “FDb” with fAPAR-MODIS and LAIMODIS.

Pa) Model version r2 MAE Bias RMSE MPE (%)

FDaFisher 0.69 26.09 14.87 32.81 41.87
FDbFisher 0.80 18.08 8.47 24.35 29.01
FDaFisher 0.71 20.49 41.13 53.18 32.88
FDbFisher 0.66 23.60 37.92 49.94 37.87
FDaFisher 0.62 32.19 29.27 43.05 51.65
FDbFisher 0.61 35.72 25.62 40.61 57.32
FDaFisher 0.68 18.65 43.04 56.21 29.93
FDbFisher 0.65 21.86 39.71 52.45 35.09
FDaFisher 0.16 15.08 −6.68 19.40 43.73
FDbFisher 0.17 28.25 −26.38 34.44 81.89
FDaFisher 0.36 21.22 8.49 14.74 66.67
FDbFisher 0.27 20.40 9.49 16.24 64.10
FDaFisher 0.16 35.03 −7.02 20.48 110.05
FDbFisher 0.13 36.24 −8.23 21.92 113.87
FDaFisher 0.64 14.42 15.61 18.23 45.30
FDbFisher 0.53 12.24 17.92 20.66 38.44
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Table 8
Statistics from actual evapotranspiration models using remote sensing data over dryland savanna and grassland sites. Climate classification is based on Köppen–Geiger (Kottek et
al., 2006) where BWh: arid/desert/hot air; BSk: cold/semiarid, Aw: equatorial/desert; Csb: warm temperate/summer dry/warm summer; Cfb: warm temperate/fully humid/warm
summer; Csa: warm temperate/summer dry/hot summer. A brief description of model type is included. When errors were reported in mm day−1 they have been converted into
Wm−2. Statistics in parenthesis refer to the model type explanations in parenthesis.

Ecosystem
type

Site Country Lat°
Lon°

Climate
type

Model type r2 MAE RMSE Reference

Open woody
savanna

Sahel (Agoufou) Mali 15.34, −1.48 BWh PT-JPL-daily fSM-ATI

satellite (in-situ)
0.80 (0.83) 20.21

(19.72)
26.53
(23.10)

This study

Open woody
savanna

Sahel (Agoufou) Mali 15.34, −1.48 BWh SVAT in-situ calibration 0.81 16.57 9.90 Ridler et al. (2012)a

Open woody
savanna

Sahel (Agoufou) Mali 15.34, −1.48 BWh SVAT satellite calibration 0.63 39.24 46.66 Ridler et al. (2012)a

Open woody
savanna

Sahel (Dahra) Senegal 15.41 −15.47 BWh Triangle using
SEVIRI/MODIS

0.75 – 31.00 Stisen et al. (2008)

Open woody
savanna

Sahel (SD-DEM) Sudan 13.28 −0.48 BWh Sim-ReSET using
SEVIRI/MODIS

0.73 26.00 – Sun et al. (2011)

Open woody
savanna

Virginia Park Australia −19.88 146.55 Aw PM- in situ meteorological 0.23 – 112.1 Cleugh et al. (2007)

Open woody
savanna

Virginia Park Australia −19.88 146.55 Aw PML-optimized
with hydrol. model

0.49 – 15.94 Zhang et al. (2010)

Savanna Howard Springs Australia −12.50° 131.15 Aw PML-optimized
with hydro. model

0.53 – 32.18 Zhang et al. (2010)

Woody savanna AZ - Flagstaff - Wildfire USA 35.40−111.80 Csb MOD16. PM new
version (old version)

0.06 (0.42) – 23.92
(18.51)

Mu et al. (2011)

Woody savanna TX -Freeman Ranch
Mesquite Juniper

USA 29.9 − 98.0 Cfa MOD16. PM new
version (old version)

0.48 (0.52) – 25.91
(30.76)

Mu et al. (2011)

Mediterranean
savanna

CA - Tonzi Ranch USA 38.4 − 121.0 Csa MOD16. PM new version
(old version)

0.61 (0.53) – 19.08
(21.36)

Mu et al. (2011)

Mediterranean
savanna

CA - Tonzi Ranch USA 38.4 − 121.0 Csa PM (field eddy calibration) 0.57 – 30.19 Yuan et al. (2010)

Mediterranean
savanna

CA - Tonzi Ranch USA 38.4 Csa PT-JPL-daily 0.74 (Kendall) 19.39 Vinukollu et al. (2011)

Mediterranean
grasslands

Balsa Blanca Spain 36.94 −2.03 BSk PT-JPL-daily fSM-ATI

satellite (in-situ)
0.31 (0.57) 10.78

(11.44)
15.03
(10.96)

This study

Mediterranean
grasslands

Balsa Blanca Spain 36.94 −2.03 BSk PML-input SWC 0.54 13.03 – Morillas et al. (2011),
in review

Mediterranean
grasslands

Balsa Blanca Spain 36.94 −2.03 BSk PML-input rainfall
(two methods)

0.32–0.47 13.88–9.92 – Morillas et al. (2011),
in review

Mediterranean
grasslands

Balsa Blanca Spain 36.94 −2.03 BSk Triangle using MODIS 0.24 3.56 – Garcia et al. (in review)

Mediterranean
grasslands

Balsa Blanca Spain 36.94 −2.03 BSk TSM with Ts composite
in parallel (series)

0.34 (0.31) 39.05
(53.82)

43.89
(58.52)

Morillas et al. (in press)a

Mediterranean
grasslands

Balsa Blanca Spain 36.94 −2.03 BSk TSM with Ts soil,
Ts canopy in parallel (series)

0.14 (0.25) 44.86
(57.67)

51.00
(62.50)

Morillas et al. (in press)a

Arid steppe
grasslands

AZ -Audubon
Research Ranch

USA 31.6 −110.5 BSk MOD16. PM new
version (old version)

0.22 (0.48) – 23.07
(23.07)

Mu et al. (2011)

Arid steppe
grasslands

AZ -Audubon
Research Ranch

USA 31.6 −110.5 BSk PT-JPL-daily 0.37
(Kendall's)

18.75 Vinukollu et al. (2011)

Arid steppe
grasslands

AZ - Walnut Gulch
Kendall Grasslands

USA 31.7 −109.9 BSk MOD16. PM new
version (old version)

0.07 (0.25) – 19.36
(18.51)

Mu et al. (2011)

Mediterranean
grassland

CA-Vairaranch USA 38.40 −120.95 Csa PM (field eddy calibration) 0.51 – −4.56 Yuan et al. (2010)

a 30 minute model outputs provided by the authors have been aggregated to daily time scale in this work to compare with the rest of the models.
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with the old algorithm version and r2=0.05 and 0.49 with the new
version. Our PT-JPL-daily model errors were lower than Mu et al.
(2011); RMSE=22.95 and 18.42 Wm−2 with the old algorithm and
RMSE=22.95 and 19.26 Wm−2 with the new algorithm. In Audubon
steppe the PT-JPL-daily model of Vinukollu et al. (2011) was not very
successful in capturing the temporal dynamics (Kendall's Tau=0.37)
but showed still a better performance than Mu et al. (2011) algorithm
ran during the same time (not shown in Table 8). Results from Yuan et
al. (2010) PMmodel calibrated with field data at another Mediterranean
grassland (Vairaranch) were better than our model results r2=0.51 and
bias=0.16 Wm−2.
5. Conclusions

The Priestley Taylor-Jet Propulsion Laboratory (PT-JPL) evapo-
transpiration λE model, developed by Fisher et al. (2008) is based
on the Priestley–Taylor equation downscaled according to multiple
stresses. The PT-JPL is attractive for its simplicity and potential for re-
gionalization using satellite data. In this study, a daily version of the
model was evaluated in some of the most extreme conditions from
the point of water availability: an open woody savanna in the Sahel
and a Mediterranean grassland, both with annual rainfall below
400 mm. A new approach was tested with in-situ and satellite data
using a soil moisture constraint based on the apparent thermal inertia
concept (fSM-ATI) relying on remotely sensed observations of surface
temperature and albedo.

When using field measured soil water content (SWC) to estimate
the soil moisture constraint, the daily PT-JPL model reproduced the
λE dynamicsmeasured from Eddy Covariance systemswithin the un-
certainty levels of the closure error system. When using the apparent
thermal inertia index fSM-ATI at the Sahelian savanna, results with
in-situ data were equivalent to those obtained using field measured
SWC. When up-scaling the fSM-ATI to MSG–SEVIRI satellite data, a
satisfactory agreement with field data was also found (r2=0.80;
MAE=20.21 Wm−2). At the Mediterranean grassland, results using
fSM-ATI were less accurate both for in-situ and satellite data (r2=0.57–
0.31: MAE=9.85–10.78 Wm−2 respectively) but still outperformed
reported results of two more complex models ran at the site: the two
sourcemodel (TSM) and the Penman–Monteith–Leuning (PML)model.

In the context of global drylands, the PT-JPL λE model using fSM-ATI

provides results comparable in accuracy to more complex models at
similar savanna and grassland biomes. Nonetheless, efforts should
be made when using fSM-ATI to reduce evapotranspiration overesti-
mates when the soil is completely dry and to improve the cloud-
mask algorithm as the fSM-ATI is very sensitive to changes in solar
irradiance.

This study also showed that the original model formulation for soil
moisture constraint, fSM, relying on the atmospheric water deficit
should be calibrated differently in each site to obtain meaningful λE
results. Therefore, the use of soil moisture constraints like ATI based on
routinely available products like surface temperature or albedo or from
soil moisture missions like the SMOS (Soil Moisture & Ocean Salinity
mission) or the futureNASAmission SMAP (SoilMoistureActive Passive)
would eliminate the need of water vapor data and field site calibrations
at dryland regions. The described modeling framework is also suitable
for introducing information from spectral regions currently under-used
in evapotranspiration models. For example, canopy water status could
be tracked by shortwave infrared indices (Ceccato et al., 2002;
Zarco-Tejada et al., 2003) and photosynthetic activity by narrow-band
indices like the Photochemical Reflectance Index, PRI (Gamon et al.,
1997; Peñuelas et al., 2011). Due to the strong coupling between evapo-
transpiration and carbon assimilation fluxes in dryland regions, some of
the biophysical constraints used in this model could be used to region-
alize Gross Primary Productivity (GPP) estimates based on Light Use
Efficiency models.
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