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Reliable climate change scenarios are critical for West Africa, whose economy relies mostly on agriculture and, in this regard,
multimodel ensembles are believed to provide the most robust climate change information. Toward this end, we analyze and
intercompare the performance of a set of four regional climate models (RCMs) driven by two global climate models (GCMs)
(for a total of 4 different GCM-RCM pairs) in simulating present day and future climate over West Africa. The results show
that the individual RCM members as well as their ensemble employing the same driving fields exhibit different biases and show
mixed results in terms of outperforming the GCM simulation of seasonal temperature and precipitation, indicating a substantial
sensitivity of RCMs to regional and local processes. These biases are reduced and GCM simulations improved upon by averaging
all four RCM simulations, suggesting that multi-model RCM ensembles based on different driving GCMs help to compensate
systematic errors from both the nested and the driving models. This confirms the importance of the multi-model approach for
improving robustness of climate change projections. Illustrative examples of such ensemble reveal that the western Sahel undergoes
substantial drying in future climate projections mostly due to a decrease in peak monsoon rainfall.

1. Introduction

Addressing climate change over West Africa is a great chal-
lenge for understanding the effects of greenhouse gas (GHG)
warming at local and regional scales. Such assessment is crit-
ical because Africa is mostly covered by semiarid regions
known for their unreliable rainfall regime which is highly
variable on intraseasonal, interannual and interdecadal time
scales [1–3]. This variability often translates into severe
droughts and floods [4] and may substantially impact food
security and water resources. Therefore, changes in future
climate may pose significant threats to the region especially
in resource poor contexts where agriculture is a prominent
instrument for enhancing food security, and adaptive capac-
ity is relatively low [5].

The production of accurate and reliable climate change
scenarios for the West African continent is therefore a maj-
or issue. In this region, climate change projections have been
often derived using global climate models (GCMs) [6, 7].
However, despite the significant progress in climate model-
ing, projections over West Africa are limited by at least two
factors. First, the West African monsoon precipitation re-
sponse to anthropogenic climate change is uncertain [8, 9]
because the spread among the GCM projections is quite large
[1, 10, 11]. Second, the typical grid box of GCMs (in the
range of 100–400 km) is not suitable to account for land sur-
face heterogeneity such as vegetation variations, complex to-
pography, and coastlines, which are important aspects of the
physical response governing the local and regional climate
change signal [12, 13].
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Regional Climate Models (RCMs) can be used to dynam-
ically downscale GCMs output in order to account for fine-
scale forcings and to provide climate change information at
the local and regional level needed for impact assessments
[14–16]. Earlier studies have shown that RCM can adequately
represent the West African monsoon climatology [17–20]
and its variability [21–23], and can be useful to understand
the interactions between the different dynamical circulations
affecting the monsoon [2, 24–27]. RCMs have also been
used to construct climate change scenarios for the early and
late 21st century [28–30], (Sylla et al. 2011b) to study the in-
fluence of land-use changes and monsoon circulation dy-
namics on future climate [4, 31] and the responses of hydro-
logy and crop models to GHGs warming [32, 33].

In the impact assessment phase, a key problem is that
both the GCMs and RCMs results suffer from the existence of
substantial uncertainties of different sources [34–36]. Such
sources include, for example, anthropogenic emissions; la-
rge-scale and regional/local-scale changes that are sensitive to
the model parameterisations and internal dynamics [37].
Therefore, a necessary approach to the generation of climate
projections and the characterization of related uncertainties
is to use multi-model ensemble experiments [35]. In fact,
Giorgi and Coppola [38] noted that a minimum of four to
five models is needed to obtain robust regional precipitation
change estimates. The ensemble approach has been recently
used over West Africa by Paeth et al. [30] employing a set of
nine RCMs.

In this paper, we present a multi-model ensemble analysis
of climate change projections over West Africa including four
RCMs driven by 2 different GCMs, for a total of four differ-
ent GCM-RCM pairs (see Table 1). We first examine and in-
tercompare the performance and projected changes of the
individual driving GCMs and nested RCMs, and then we
investigate how different types of subensembles (ensemble of
RCMs driven by same GCMs and ensemble of RCMs driven
by different GCMs) can improve the robustness of the clim-
ate change signal. The sample of GCMs/RCMs pairs in the
ensemble is relatively small (2–4 models), so that this study
should be considered as providing illustrative methodologi-
cal examples rather than scenarios over the region for appli-
cation to impact and adaptation studies. The next section
begins with the RCMs description, the boundary forcing
(GCMs) and observation datasets used for the baseline vali-
dation.

2. Models Description and
Observation Datasets

Ensemble of RCM experiments have been performed for
different African domains encompassing the full West Africa
AMMA region [45] (Figure 1) as part of the ENSEMBLES
project [46]. A set of ten RCMs employing the same and dif-
ferent GCMs boundary conditions forced by the A1B GHGs
scenario are available over West Africa for both present day
and future climate conditions. For these experiments, the
boundaries were placed well outside the region of interest

and this has allowed the RCMs to develop their own dy-
namics in the interior domain. While the model domain
might affect the RCM simulations, the large domain size em-
ployed by the models should minimize this effect. The main
purpose of this study is to assess the present-day simulation
but also the mid-term future projections over West Africa. In
this regards, we consider only the four RCM simulations
which cover the full periods of 1981–2000 (present day) and
2031–2050 (future). They are summarized in Table 1 along
with their driving GCMs and references. Note that in this set,
two RCMs are driven by ECHAM5, and the other two are
forced by HadCM3. Both ECHAM5 and HadCM3 realisti-
cally simulate most of the features of the WAM circulation
including the zonal wind profile which most GCMs usually
fail to reproduce [4, 47]. Each of the GCMs and the RCMs
was a single run. The provision of the same and different
GCMs boundary forcing makes it possible to evaluate not
only the internal dynamics of each of the regional configu-
rations but also the role of the large-scale conditions. We
should emphasize that these RCMs were first driven by ERA-
Interim reanalysis as it is usually the case before applying
them for climate change studies [14, 42]. However, these
simulations are not analyzed here. We also stress that the
simulations analyzed here were the only ones including the
full 20-year present day and future periods selected.

As stated above, two periods of 20 years are considered:
the present-day (reference: 1981–2000) and the future (A1B:
2031–2050). For the present-day climate, simulated precip-
itation is compared to the observational datasets: GPCP
(Global Precipitation Climatology Project; 2.5◦×2.5◦ resolu-
tion; [48]), CRU (Climate Research Unit, land only, 0.5◦ ×
0.5◦ resolution; [49]), CMAP (Climate Prediction Center
Merged Analysis of Precipitation, 2.5◦×2.5◦; [50]) and GPCC
(Global Precipitation Climatology Centre, 1◦×1◦ resolution;
[51]). The simulated 2-meter temperature is validated
against the CRU observation, ERA-40 reanalysis (2.5◦ ×
2.5◦ resolution; [52]), the National Centers for Environ-
ment Prediction/National Center for Atmospheric Research
(NCEP/NCAR) reanalysis II (2.5◦×2.5◦ resolution; [53]) and
the ERA-Interim reanalysis (1.5◦ × 1.5◦ resolution; [54, 55]).
The wind field and specific humidity are also compared with
the reanalysis of NCEP/NCAR II, ERA-40, and ERA-Interim.
We only consider the June–September (JJAS) period which is
the peak of the monsoon rainy season and intercompare the
individual GCMs and RCMs, the ensemble of RCMs using
the same boundary forcing (hereafter referred to as “ensem-
ble”), and the ensemble of all the RCMs (hereafter referred
to as “multi-model ensemble”). For this, in addition to
the spatial patterns of bias, we compute some quantitative
measure for rainfall over the Sahel, the Guinea regions, and
the whole West Africa (see Figure 1(b) for the delimitation
of these subdomains) which are the mean bias (or bias),
the root mean square difference (RMSD) and the pattern
correlation coefficient (PCC). They provide information at
the regional (or subregional) level and at the grid point le-
vel. Therefore, they can be considered as measures of model
systematic errors and performance.
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Table 1: List of regional climate models (RCMs) along with the driving global climate models (GCMs).

RCMs ICTP-RegCM3 MPI-REMO SMHI-RCA METO HC-HadRM3P

Institute
Abdus Salam International

Centre for Theoretical
Physics, Italy

Max Planck Institute,
Germany

Sveriges Meteorologiska
och Hydrologiska institut,

Sweden

Met Office-Hadley Centre,
UK

Short name RegCM3 REMO RCA HadRM3P

Resolution 0.44◦ 0.44◦ 0.44◦ 0.44◦

Reference Pal et al. [39] Jacob et al. [40] Kjellström et al. [41] Jones et al. [42]

Boundary forcing
(GCMs)

ECHAM5 r3, ECHAM5 r3, HadCM3Q0, HadCM3Q0,

Roeckner et al. [43] Roeckner et al. [43] Collins et al. [44] Collins et al. [44]
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Figure 1: AMMA domain and topography (a) Sahel, Guinea, West Africa, and Western Sahel subdomain considered for analyses through
the paper (b).

3. Results and Discussions

3.1. Present Day Climate. The June–September (JJAS) sea-
sonal mean temperature distribution during the present-day
period (1981–2000) over West Africa is presented at Figures
2(a)–2(l) for the observation of CRU (Figure 2(a)), the ERA-
40, NCEP, and ERA-Interim reanalyses (Figures 2(b), 2(c),
and 2(d), resp.), the two GCMs ECHAM5 and HadCM3
(Figures 2(e) and 2(i), resp.), the two RCMs RegCM3 and
REMO driven by ECHAM5 (Figures 2(f) and 2(g), resp.), the
two RCMs: RCA and HadRM3P (Figures 2(j) and 2(k), resp.)
driven by HadCM3 and their different ensemble mean
(Figures 2(h) and 2(l)). CRU observation and the reanalyses
show a good agreement in locating the highest temperature
values in the north (Sahara desert, Sahel) and lowest around
the Gulf of Guinea, in particular over the peak of mountain-
ous regions of Guinea Highlands, Cameroun mountains, and
Jos Plateau. Note that these latter cold temperatures are

missing in NCEP, confirming hence the existence of dis-
crepancies between the reanalysis products [56, 57].

The models capture the basic features of the spatial tem-
perature distribution; however, they show different patterns
and magnitudes of bias. For example, RegCM3 has a cold bias
over the Sahara desert and Guinea coast, RCA and HadRM3P
over the Sahel band, while REMO is mostly warmer (Figures
3(a)–3(h)). As a result, the ensemble mean of RCMs driven
by ECHAM5 outperforms the individual RCMs and the
GCM simulations, while the ensemble of RCMs driven by
HadCM3 fails to do that.

The corresponding rainfall patterns as well as their biases
with respect to GPCP observations are displayed in Figures
4(a)–4(l) and Figures 5(a)–5(h), respectively. We use four
sets of observation to account for uncertainties in the pre-
cipitation field (Sylla et al. 2011c). In fact, the differences be-
tween the various observation products (Table 2) can reach
up to 10% at the regional level, while over the whole West
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Figure 2: 1981–2000 averaged JJAS of temperature (in ◦C) from: (a) CRU observation, (b) ERA-40 reanalysis, (c) NCEP reanalysis, (d) ERA-
Interim reanalysis, (e) ECHAM5, (f) RegCM3, (g) REMO, (h) Ens/ECHAM5 (ensemble mean of RCMs driven by ECHAM5), (i) HadCM3,
(j) RCA, (k) HadRM3P, and (l) Ens/HadCM3 (ensemble mean of RCMs driven by HadCM3).

Table 2: Mean bias and spatial root mean square difference (RMSD) at different subdomains considered in Figure 1(b) for CMAP, CRU,
and GPCC rainfall with respect to GPCP. Observational datasets (CMAP, CRU, and GPCC) are interpolated to GPCP grid. Bias is expressed
as percentage of GPCP value while RMSD as mm/day.

Observations CMAP CRU GPCC

Metrics Bias RMSD Bias RMSD Bias RMSD

Sahel −10.35 0.41 −2.79 0.40 −6.34 0.51

Guinea 1.53 0.74 8.51 1.31 3.33 1.17

West Africa −5.18 0.49 2.86 0.69 −2.30 0.69
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Figure 3: 1981–2000 averaged JJAS bias of temperature (in ◦C) for (a) ECHAM5, (b) RegCM3, (c) REMO, (d) Ens/ECHAM5 (ensemble
mean of RCMs driven by ECHAM5), (e) HadCM3, (f) RCA, (g) HadRM3P, and (h) Ens/HadCM3 (ensemble mean of RCMs driven by
HadCM3) compared with CRU.

Table 3: Spatial pattern correlation coefficient (PCC) over West
Africa from CMAP, CRU, and GPCC rainfall with respect to GPCP.
Observational datasets (CMAP, CRU, and GPCC) are interpolated
to GPCP grid.

Observations CMAP CRU GPCC

PCC 0.985 0.981 0.974

Africa it does not exceed 5%. Although these products ex-
hibit some differences, their patterns show a good agreement,
with PCCs of more than 0.97 (Table 3). For the spatial dist-
ribution, observations (CRU, GPCC, CMAP, and GPCP) lo-
cate the main summer rainfall in a zonal and tilted band
around 8◦N, with rainfall decreasing south and north of it.
Precipitation maxima are, however, located in orographic
regions of the Guinea highlands, Jos plateau, and Cameroun
Mountains. Key differences across the observations are that
CRU shows a discontinuity in the band of maximum rainfall
over West Africa and GPCP has a much lower intensity along

the coastlines of Cameroun/Nigeria highlands resulting in an
RMSD between the two products of more than 1.3 mm/day
over the Gulf of Guinea.

The GCMs (ECHAM5 and HadCM3) simulate a thicker
rainfall band and maxima off the coast in the eastern Atlantic
and the Gulf of Guinea. Substantial differences among the
RCMs are noticed. Generally, RegCM3 and REMO underes-
timates and overestimates rainfall intensity, respectively, and,
similarly to ECHAM5, exhibit a wide rainfall band but place
the maxima over orographic regions. In the HadCM3-driven
RCMs experiments, RCA confines much of the rainfall be-
tween 4–9◦N hence showing an underestimation over the re-
gions north of it, while HadRM3P displays a much better
defined rainfall band but extends the rainfall a bit north and
fails to capture the large intensity in the orographic zones.

The different performance of the GCMs and RCMs are
highlighted at the regional level in Tables 4 and 5 summar-
izing the Bias, RMSD, and PCC with respect to GPCP for the
individual models over the Sahel, Guinea, and whole West
Africa. Although the PCCs are overall high (more than 0.8)
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Figure 4: 1981–2000 averaged JJAS of precipitation (in mm/day) from: (a) CRU observation, (b) GPCC observation, (c) CMAP observation,
(d) GPCP observation, (e) ECHAM5, (f) RegCM3, (g) REMO, (h) Ens/CHAM5 (ensemble mean of RCMs driven by ECHAM5), (i)
HadCM3, (j) RCA, (k) HadRM3P, and (l) Ens/HadCM3 (ensemble mean of RCMs driven by HadCM3).

Table 4: Mean bias and spatial root mean square difference (RMSD) at different subdomains considered in Figure 1(b) from individual
GCMs (ECHAM5 and HadCM3) and Individual RCMs (RegCM3, REMO, HadRM3P, and RCA) rainfall with respect to GPCP. Models
output are interpolated to GPCP grid. Bias is expressed as percentage of GPCP value while RMSD as mm/day.

Models ECHAM5 RegCM3 REMO HadCM3 RCA HadRM3P

Metrics Bias RMSD Bias RMSD Bias RMSD Bias RMSD Bias RMSD Bias RMSD

Sahel −18.19 0.79 −14.58 0.76 8.19 1.37 −7.80 0.91 −31.97 1.52 6.21 1.23

Guinea 2.11 1.78 −1.43 1.77 62.58 5.61 20.07 2.55 19.34 2.21 −14.17 1.92

West Africa −10.39 1.07 2.46 1.44 24.94 2.79 5.68 1.34 −5.18 1.40 11.92 1.37
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Figure 5: 1981–2000 averaged JJAS precipitation bias (in %) for (a) ECHAM5, (b) RegCM3, (c) REMO, (d) Ens/CHAM5 (ensemble mean
of RCMs driven by ECHAM5), (e) HadCM3, (f) RCA, (g) HadRM3P, and (h) Ens/HadCM3 (ensemble mean of RCMs driven by HadCM3)
with respect to GPCP.

Table 5: Spatial pattern correlation coefficient (PCC) over West Af-
rica from individual GCM (ECHAM5 and HadCM3) and individ-
ual RCM (RegCM3, REMO, HadRM3P, and RCA) rainfall with
respect to GPCP. Models output are interpolated to GPCP grid.

Models ECHAM5 RegCM3 REMO HadCM3 RCA HadRM3P

PCC 0.925 0.849 0.893 0.889 0.888 0.840

indicating a good agreement between the models and the ob-
servation, Table 4 reveals mixed results. On one hand, some
RCM systematic errors are generally higher (in term of ab-
solute value) than that of the GCMs. For example, the bias in
REMO and RCA over the Guinea regions and the Sahel re-
aches respectively 62.58% and −31.97% of observed values
against 2.11% and−7.80% for ECHAM5 and HadCM3. This
is mostly due to the tendency of these RCMs to produce ex-
cessive rainfall over the orographic regions and to shift the
rainfall band southward. On the other hand, RegCM3 and
HadRM3P generate lower bias over the Sahel and the Gulf of

Guinea, respectively with respect to their driving fields. The
RMSD for the individual RCMs and their ensembles employ-
ing the same driving field are found to be generally larger in
the regional models with the highest values occurring in the
Guinea regions. This is related to the presence of some fine-
scale features tied to orography better represented in the
RCMs than in the GCMs.

Although the RCMs offer some improvements compared
to the driving GCMs, the best performances are captured in
their ensemble means. In fact, they outperform the individ-
ual RCMs and the driving GCM skills in both their spatial
patterns and systematic errors (see Tables 6 and 7) but also
reveal different weaknesses. In the ECHAM5-driven RCM
ensemble, the spatial distribution of rainfall intensity is in ex-
cellent agreement with observations (PCC of more than 0.9),
although the rainband is still thicker than observed. Con-
versely, in the RCM ensemble mean employing HadCM3 as
driver, the sharper rainfall band is well captured, but the
orographic maxima are not simulated well. This highlights
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Figure 6: 1981–2000 averaged JJAS of 850 hPa wind vectors (in meters per second) superimposed to specific humidity (shaded in grams
per kilogram) from: (a) NCEP reanalysis, (b) ERA-40 reanalysis, (c) ERA-Interim reanalysis, (d) ECHAM5, (e) RegCM3, (f) REMO, (g)
Ens/ECHAM5 (ensemble mean of RCMs driven by ECHAM5), (h) HadCM3, (i) RCA, (j) HadRM3P, and (k) Ens/HadCM3 (ensemble
mean of RCMs driven by HadCM3).
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Figure 7: 1981–2000 averaged JJAS of temperature (top panel, in ◦C), precipitation (middle panel, mm/day), and specific humidity (shaded;
in g/kg; bottom panel) with superimposed wind vector (in m/s) from: (a) CRU observation, (b) mean ensemble of GCMs, (c) multi-model
ensemble of the four RCMs, (d) GPCP observation, (e) mean ensemble of GCMs, (f) multi-model ensemble of the four RCMs, (g) NCEP
reanalysis, (h) mean ensemble of GCMs, and (i) multi-model ensemble of the four RCMs.

the importance of the individual model skills in the perfor-
mance of the ensemble mean.

A few considerations are important concerning the per-
formance measures in Tables 4 and 5. These were calculated
after upscaling all fields to the coarse resolution of the GPCP
data, so that the comparison would not be affected by the

difference in resolution across the datasets. However, Table 2
shows that there are significant differences across observa-
tional datasets, sometimes of the same order of magnitude
as the differences with the model results. This implies that
a substantial level of uncertainty is present in the evaluation
of the models associated with observation uncertainties. In
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Figure 8: 1981–2000 averaged JJAS bias of temperature (top panel, in ◦C) from: (a) mean ensemble of GCMs (◦C) and (b) multi-model
ensemble of the four RCMs compare with CRU and precipitation bias (bottom panel, in %) from: (c) mean ensemble of GCMs and (d)
multi-model ensemble of the four RCMs with respect to GPCP.

Table 6: Mean bias and spatial root mean square difference (RMSD) at different sub-domains considered in Figure 1(b) from the ensemble
of GCMs (Ens/GCMs), the ensemble of RCMs driven by the same GCMs (Ens/ECHAM5 and Ens/HadCM3), and the ensemble of all RCMs
(multi-model ensemble: Ens/RCMs) rainfall with respect to GPCP. Ensembles data are interpolated to GPCP grid. Bias is expressed as
percentage of GPCP value while RMSD as mm/day.

Ensembles Ens/GCMs Ens/ECHAM5 Ens/HadCM3 Ens/RCMs

Metrics Bias RMSD Bias RMSD Bias RMSD Bias RMSD

Sahel −12.99 0.81 −4.69 0.88 −3.55 0.90 −4.12 0.63

Guinea 11.09 2.11 32.87 3.19 5.14 1.65 19.00 2.11

West Africa −2.35 1.13 14.25 1.76 4.35 1.01 9.30 1.09
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Figure 9: Averaged JJAS difference between the future (A1B: 2031–2050) and the reference period (1981–2000) of temperature from: (a)
ECHAM5, (b) RegCM3, (c) REMO, (d) Ens/ECHAM5 (mean ensemble of RCMs driven by ECHAM5), (e) HadCM3, (f) RCA, (g) HadRM3P,
and (h) Ens/HadCM3 (mean ensemble of RCMs driven by HadCM3).

Table 7: Pattern correlation coefficient (PCC) over West Africa
from the ensemble of RCMs driven by the same GCMs
(Ens/ECHAM5 and Ens/HadCM3) and the ensemble of all RCMs
and all GCMs (multi-model ensemble: Ens/RCMs and Ens/GCMs)
rainfall with respect to GPCP. Ensembles data are interpolated to
GPCP grid.

Ensemble Ens/GCMs Ens/ECHAM5 Ens/HadCM3 Ens/RCMs

PCC 0.916 0.933 0.942 0.949

particular, because of low station density the observation da-
tasets may be characterized by especially high uncertainties
in remote regions of Africa.

The seasonal (JJAS) mean of the 850 hPa specific humid-
ity and superimposed wind fields are shown in Figures 6(a)–
6(k) for the NCEP, ERA-40, and ERA-Interim reanalyses, the
GCMs, the RCMs as well as their ensemble means. All the
models display a stronger monsoon flow and larger specific
humidity values compared to the NCEP reanalysis but quite

close to ERA-40 and ERA-Interim reanalyses. In addition, the
RCMs generally simulate more intense and deeper westerlies
over land with respect to the driving fields. Note that only
RegCM3 is able to outperform the driving GCM by simu-
lating a much lower amount of humidity, closer to reanalysis
such as ERA-40, compared to ECHAM5. The ensemble mean
of ECHAM5 driven experiments improves REMO but de-
teriorates RegCM3 simulations, although it shows a better
performance than the GCM. In contrast, the ensemble mean
based of HadCM3-driven RCMs amplifies the overestima-
tion of humidity in the Guinea region.

It is thus evident that significant performance differences
exist between the driving GCMs and nested RCMs and
among the RCMs driven by the same GCM. This illustra-
tes the importance of the representation of local/regional
processes [47] tied to the internal dynamics of the RCM [29].
Despite these differences, similarities in the simulated spe-
cific humidity between REMO and ECHAM5 and between
HadRM3P and HadCM3 are found. This suggests that
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Figure 10: Averaged JJAS difference between the future (A1B: 2031–2050) and the reference period (1981–2000) of precipitation from: (a)
ECHAM5, (b) RegCM3, (c) REMO, (d) Ens/ECHAM5 (mean ensemble of RCMs driven by ECHAM5), (e) HadCM3, (f) RCA, (g) HadRM3P,
and (h) Ens/HadCM3 (mean ensemble of RCM driven by HadCM3). Precipitation change are in % of present day values and areas where
reference mean precipitation is less than 0.5 mm/day have been masked out. Contours represent where the changes are significant at 90%
level.

although the RCM internal dynamic plays an important role
in the simulation of regional climates, the large-scale en-
vironment mostly described by the forcing fields also has an
influence on the model solution particularly for the tempera-
ture and moisture advection from the boundaries. In other
words, the model solution is obtained through a dynam-
ical equilibrium between the information from the lateral
boundary conditions and the internal model physics/dy-
namics, with this equilibrium depending on features such as
domain size, resolution, and size of the lateral buffer zone
[14].

From this analysis, it can be seen that in the ensemble
mean based on the regional climate models driven by the
same GCM, some of the errors can compensate each other
but still biases from the boundary forcings may remain. A
further ensemble approach is to consider ensembles of dif-
ferent RCMs nested in different GCMs. An example of this
is shown in Figures 7(a)–7(i) along with the corresponding

rainfall and temperature bias in Figures 8(a)–8(d). Compar-
ing these multi-model ensemble means with CRU observa-
tions shows that they both reproduce more accurately the
spatial distribution of seasonal mean temperature, with the
RCM multi-model ensemble capturing more details tied to
the local topography. Similarly, compared to GPCP pre-
cipitation, the RCM ensemble remarkably outperforms the
GCM ensemble as well as the individual RCM members, by
representing a more realistic spatial distribution (PCC of
around 0.95; Table 7) and, in particular, better defined rain-
band, orographic maxima, and rainfall values closer to obser-
vations (smaller RMSD). Similar conclusions are also found
for specific humidity with the superimposed wind vectors.

We thus find that the full ensemble of RCM simulations
shows the best performance when compared to the individ-
ual models or to the GCMs. This is because the different
RCMs are characterized by different biases which partially
counterbalance in the ensemble average. The discrepancies
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Figure 11: Averaged JJAS difference between the future (A1B: 2031–2050) and the reference period (1981–2000) of temperature (top panel)
and precipitation (bottom panel), from: (a and c) mean ensemble average of the two GCMs; (b, d) multi-model ensemble of the four RCMs.
Precipitation changes, in % of present day values and where reference means less than 0.5 mm/day, are masked out. Contours represent
where the changes are significant at 90% level.

among the individual models in the simulation of the spatial
patterns of rainfall and temperature, may substantially im-
pact the simulated climate change signal [29, 58, 59]. In the
next section, we will examine to which extent these differen-
ces affect the magnitude and the spatial pattern of the change
signal projected by the multi-model ensemble.

3.2. Future Climate

3.2.1. Mean Changes. Figures 9(a)–9(h) shows the tempera-
ture changes (A1B minus reference) from the driving GCMs,
the nested RCMs, and their ensemble means. In good agree-
ment with the GCMs, the RCMs exhibit overall warming

over West and North Africa, with the maxima being some-
what differently located. For RegCM3 and REMO, maximum
warming is located over eastern North Africa (10◦E–22◦E;
20◦N–28◦N) while models driven by HadCM3 exhibit a core
of maximum warming over the western Sahel (15◦W–2◦W;
10◦N–18◦N). A common feature over the West Sahel is the
existence of a core of large increase in temperature, which is
missing in the driving fields and evidently originates from
the local and regional processes represented by the internal
dynamics of the RCMs. This is more marked in the RCA,
HadRM3P and their ensemble mean and is connected to the
overall warmer climate shown over the Guinea and Sahel
regions. The GCMs, RCMs, and their ensemble means thus
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Figure 12: Present-day and future annual cycles of precipitation (in mm/day) over Western Sahel from, GCMs (ECHAM5 and HadCM3),
RCMs (RegCM3, REMO, RCA, and HadRM3P), and the ensemble mean of RCMs driven by ECHAM5 and HadRM3P. The present day is
represented by dashed lines and future by solid lines.
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Figure 13: Present-day and future annual cycles of temperature (in ◦C) over Western Sahel from: GCMs (ECHAM5 and HadCM3),
RCMs (RegCM3, REMO, RCA, and HadRM3P), and the ensemble mean of RCMs driven by ECHAM5 and HadRM3P. The present-day
is represented by dashed lines and future by solid lines.

simulate consistent warming but with different magnitudes
and spatial patterns, which adds uncertainty to the projec-
tions.

For the projected rainfall change (Figures 10(a)–10(h)),
a consistent pattern of change signal off the western African
coasts and over the western Sahel emerges, consisting of a
pronounced decrease (more than 25%) in precipitation for
all models, except for RCA. These drier conditions are mostly
associated to the larger warming (up to 10-11 K) found there,
probably a result of lower evaporative cooling and clou-
diness. The two GCMs agree in showing this significant dry-
ing along with an increase of precipitation in regions east and
south of the northern Sahel. HadRM3P strictly replicates this
spatial distribution with more details, while RegCM3 and
REMO show no significant changes around the regions south
of the Sahel. Consequently, the ensemble of RCMs driven by
ECHAM5 reveals a clear picture of climate change signal with
rainfall increasing in the eastern Sahel and decreasing in the
western Sahel. The ensemble of RCMs driven by HadCM3
shows a wetter climate in the East but the drying over the

western part is somewhat offset by the increase of rainfall
projected by RCA.

The similarities found in the driving GCMs and nested
RCMs suggest that over the western Sahel the negative cha-
nges are primarily driven by the large-scale environment de-
scribed by the lateral boundary forcings. Conversely, the
marked differences between the global and regional model
projections over other areas highlight the role of local con-
ditions in determining the response of the regional climate to
the global warming. Furthermore, the discrepancies among
the RCMs in predicting future climate even when driven by
the same GCM indicate that the projections are sensitive to
the specific physics and internal variability of the models.
These uncertainties thus suggest that a multi-model ensem-
ble approach encompassing both RCMs and GCMs may be
needed for a better evaluation of climate change over the
region [30, 60].

The multi-model ensemble mean change accounting for
all four regional climate models (regardless of the boundary
forcings) is shown in Figures 11(a)–11(d). Consistent with
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Figure 14: Present-day and future annual cycles of simulated precipitation (in mm/day; (a)) and temperature (in ◦C; (b)) from: mean
ensemble of the two GCMs and multi-model ensemble mean of the four RCMs over Western Sahel. The present day is represented by dashed
lines and the future by solid line.

the individual member’s projections, the multi-model en-
semble shows a general increase of surface air temperature
with maximum warming occurring over the northern and
central Africa. The RCM ensemble predicts much larger
warming than the GCM average over western and north-east
Sahel. Concerning the rainfall changes, the multi-model en-
semble confirms the emerging picture consisting of summer
drying over the western Sahel in conjunction with the large
warming there. Paeth et al. [30] found a drying trend using
an ensemble of nine RCMs. Therefore, this appears to be a
consistent result.

3.2.2. Changes in the Annual Cycle. To investigate the link be-
tween the decrease in mean rainfall and the monsoon season
over the western Sahel (e.g., sub-domains in Figure 1(b)),
we perform an area average of rainfall and temperature for
both present-day and future climate and display the mean
annual cycles of rainfall over this region in Figure 12 for the
individual GCM, the nested RCMs and their ensembles. It is
found that for ECHAM5, HadCM3, and all the RCMs, except
RCA, the future annual cycle of rainfall curve lies below that
of the corresponding present-day throughout the whole year,
with decreases being larger during the peak of the season
(August). This suggests that drier conditions projected by
these models are mostly due to a weakening of the peak mon-
soon rainfall and a slight narrowing seasonal cycle over the
region. The opposite is found for the RCA projection. In the
case of HadCM3, the negative changes occur mostly as a
consequence of less intense rainfall amount simulated during
the onset and installation phase of the present-day monsoon
season. Overall, these results indicate a delay in the rainfall
seasonal cycle in response to increasing GHG concentration
[61]. For the temperature annual cycle (Figure 13), the future

climate is consistently and substantially warmer throughout
the whole year, but the differences (compared to the present-
day) are larger from May through October. Therefore, this
warming is likely due to the reduction of cloud cover [4] and
shortwave radiative forcing along with reduced evaporation.
The multi-model ensembles employing, respectively, the four
RCMs and the two driving GCMs show results similar to the
majority of the models for both the precipitation and tem-
perature annual cycle changes (Figures 14(a) and 14(b)).

3.2.3. Time Series. In the previous sections, an interesting
and consistent change pattern was found to be a maximum
drying associated to a larger warming over Western Sahel.
Therefore, it is useful to examine the time series over that
region from the late 20th through the middle of the 21st cen-
turies to gain insights on possible changes in variability that
might be associated with these mean changes. These time
series are displayed in Figures 15(a) and 15(b). Both for tem-
perature and precipitation, none of the models appears to
show significant changes in interannual variability, however
an interesting threshold effect is evident, in which the warm-
ing and drying trends ensue only after the year 2020, with lit-
tle change after that. This suggests that threshold behavior
and multidecadal variability, both being non-linear effects,
can strongly affect the climate change signal and thus need
to be carefully considered when developing climate change
scenarios [34].

4. Summary and Conclusions

In this paper, we analyzed and intercompared the perfor-
mance and the projected changes of individual global and
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Figure 15: 1981–2050 trend of (a) temperature (in ◦C) and (b) precipitation (mm/day) by GCMs, RCMs, the ensemble means and multi-
model ensemble mean of GCMs and RCMs over Western Sahel.

regional climate models, along with different sets of model
ensembles, for the West Africa region. First, we found mixed
results in terms of RCMs improving the simulation of climate
patterns compared to the driving GCMs. In the case of pre-
cipitation, the GCMs shift the monsoon rain band southward
and the individual RCMs show patterns dominated by dry
biases over land. The ensembles based on RCMs employing
the same GCMs as boundary forcing outperforms some of
the features of the individual members and the driving global
climate model. However, the best performance is attained
when averaging all of the available RCMs, driven by both
GCMs. This is because of the counterbalancing of errors
in the different models. This would suggest that the use of
multi-model ensembles using a range of RCMs driven by
different GCMs might provide an optimal approach to the
provision of climate change scenarios over West Africa. In
addition, the fact that different RCMs driven by the same
GCM may have biases that are different among each other
and compared to those of the GCMs indicates that local

processes and relevant parameterizations are important in
determining the model response to the boundary forcing.

For the future period, GCMs produce mostly drier condi-
tions over the western Sahel and wetter conditions in regions
north of the Gulf of Guinea. The RCMs predict consistent
drying in conjunction with larger warming over the western
regions of the interest area but show no significant rainfall
changes in the southern regions. This indicates, again, that
although the boundary forcing by the GCMs does influence
aspects of the RCM-predicted change, the RCM projections
are also sensitive to local and regional processes and how they
are treated in the models. Consistent results, but with differ-
ent magnitudes, are found using different sets of ensembles.

We also analyzed the annual cycles of rainfall and tem-
perature and found that the majority of the models simulates
lower peaks of rainfall and amplified temperature maxi-
ma during the future monsoon season. The inter-annual var-
iability does not show large changes in the future projec-
tions; however most of the simulated temperature and
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precipitation change show a threshold effect, with negligible
trends before 2020 and more detectable trends ensuing only
thereafter.

Some considerations for our work are important. First
ensemble averaging, if sufficiently large, is expected to filter
out the effect of variability and other factors that may be af-
fecting the response of individual models (e.g., specific bia-
ses). Therefore, it should provide the best estimate of the
forced change signal. On the other hand, the real climate cha-
nge will be only one realization, so it will be affected by var-
iability. In addition, it could be that one of the models of
the ensemble is actually correct, and therefore the ensemble
average might mask that model and indeed give a conserva-
tive estimate of change. On the other hand, to date there is
really no way to unambiguously establish whether one model
projection is right compared to the others. The only way to
circumvent this uncertainty is to provide measures of spread
(i.e., uncertainty) that also account for natural interdecadal
variability. However, this is really not feasible in our case
because of the small ensemble we considered. Second, the
two GCMs we used tend to provide similar change patterns
over West Africa; however, other GCMs may provide very dif-
ferent patterns [11], and this will affect the RCM simulations.

In general, our results show how different sets of GCMs
and RCMs ensembles can improve the simulations of rainfall
and temperature over West Africa and provide consistent
climate change scenarios but with different magnitude of the
signal. This is relevant for the general applicability of this
approach over the region, especially within the framework
of the upcoming CORDEX (Coordinated Regional Climate
Downscaling Experiment) activities [60] aimed at producing
more robust climate changes scenarios over the region based
on large multi-model ensembles.
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